988 resultados para Dynamic Loading


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the implementation of dynamic electrostatic force microscopy in liquid media. This implementation enables the quantitative imaging of local dielectric properties of materials in electrolyte solutions with nanoscale spatial resolution. Local imaging capabilities are obtained by probing the frequency-dependent and ionic concentration-dependent electrostatic forces at high frequency (>1 MHz), while quantification of the interaction forces is obtained with finite-element numerical calculations. The results presented open a wide range of possibilities in a number of fields where the dielectric properties of materials need to be probed at the nanoscale and in a liquid environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today´s organizations must have the ability to react to rapid changes in the market. These rapid changes cause pressure to continuously find new efficient ways to organize work practices. Increased competition requires businesses to become more effective and to pay attention to quality of management and to make people to understand their work's impact on the final result. The fundamentals in continmuois improvement are systematic and agile tackling of indentified individual process constraints and the fact tha nothin finally improves without changes. Successful continuous improvement requires management commitment, education, implementation, measurement, recognition and regeneration. These ingredients form the foundation, both for breakthrough projects and small step ongoing improvement activities. One part of the organization's management system are the quality tools, which provide systematic methodologies for identifying problems, defining their root causes, finding solutions, gathering and sorting of data, supporting decision making and implementing the changes, and many other management tasks. Organizational change management includes processes and tools for managing the people in an organizational level change. These tools include a structured approach, which can be used for effective transition of organizations through change. When combined with the understanding of change management of individuals, these tools provide a framework for managing people in change,

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of Group VIII metal catalysts was obtained for the semi-hydrogenation of styrene. Catalysts were characterized by Hydrogen Chemisorption, TPR and XPS. Palladium, rhodium and platinum low metal loading prepared catalysts presented high activity and selectivity (ca. 98%) during the semi-hydrogenation of styrene, being palladium the most active catalyst. The ruthenium catalyst also presented high selectivity (ca. 98%), but the lowest activity. For the palladium catalyst, the influence of the precursor salt and of the reduction temperature on the activity and selectivity were studied. The following activity series was obtained: PdN-423 > PdCl-673 > PdCl-373> PtCl-673 > RhCl-673 >> RuCl-673. As determined by XPS, differences in activity could be attributed, at least in part, to electronic effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enzymatic hydrolysis of steam-pretreated sugarcane bagasse, either delignified or non-delignified, was studied as a function of enzyme loading. Hydrolysis experiments were carried out using five enzyme loadings (2.5 to 20 FPU/g cellulose) and the concentration of solids was 2% for both materials. Alkaline delignification improved cellulose hydrolysis by increasing surface area. For both materials, glucose concentrations increased with enzyme loading. On the other hand, enzyme loadings higher than 15 FPU/g did not result in any increase in the initial rate, since the excess of enzyme adsorbed onto the substrate restricted the diffusion process through the structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of metal loading and support surface functional groups (SFG) on methane dry reforming (MDR) over Ni catalysts supported on pine-sawdust derived activated carbon were studied. Using pine sawdust as the catalyst support precursor, the smallest variety and lowest concentration of SFG led to best Ni dispersion and highest catalytic activity, which increased with Ni loading up to 3 Ni atoms nm-2. At higher Ni loading, the formation of large metal aggregates was observed, consistent with a lower "apparen" surface area and a decrease in catalytic activity. The H2/CO ratio rose with increasing reaction temperature, indicating that increasingly important side reactions were taking place in addition to MDR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paperiteollisuuden prosessituotteista paperia varastoidaan erikokoisina rullina esim. pystyrullavarastoihin. Tämän diplomityön tavoitteena oli kehittää Konecranesin prosessinosturille liityntä paperirullia käsittelevän kuormauselimen ja nosturin välille. Tavoitteena oli löytää kiinnitysmenetelmä, joka mahdollistaa nosturien joustavan käytön mahdollisimman pienin muutoksin itse nosturin standardoituun rakenteeseen. Pääasiallisena syventymisen kohteena oli alipaineella paperirullia nostettavan kuormauselimen liityntä. Liitynnän on kyettävä joustamaan ja vaimentamaan paperirullia nostavaan kuormauselimeen nosturin liikkeelle lähdöstä ja pysähtymisestä syntyvät herätteet ja voimat. Nosturin liikenopeus on kyettävä pitämään mahdollisimman suurena lyhyen rullienkäsittelyajan saavuttamiseksi. Liitynnältä vaaditaan kykyä ottaa kuormauselin vastaan mahdollisimman suurella nostonopeudella. Lisäksi kuorman ja kuormauselimen oskillaatio on vaimennettava mahdollisimman nopeasti samalla rajoittaen heilunnasta aiheutuvaa maksimi siirtymää. Liitynnän suunnittelu pohjautuu nosturin, kuormauselimen ja paperirullan muodostaman systeemin teoreettiseen tarkasteluun. Systeemistä laadittiin dynaaminen malli, jonka avulla tutkittiin oskillaation ja syntyvien kiihtyvyyksien suuruutta. Näiden teoriaan perustuvien tuloksien pohjalta suunniteltiin vaimennukseen tarvittavat vaimennuselementit ja liitynnän rakenne. Suunnittelutyön tuloksena saatiin liitynnälle alustava rakenne, joka mahdollistaa käytettävien vaimennuselementtien vaihtamisen ja siten tehokkaan heilunnan vaimmennuksen. Suunnittelutyön lähtökohtana oleva teoreettinen tarkastelu vaatii tuekseen esim. prototyypin kokeellisten tulosten saamiseksi ennen lopullisen tuotteen valmistamista. Suunnitteluprosessissa noudatettiin järjestelmällisen tuotesuunnittelun vaiheita ja menetelmiä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal stability and thermal decomposition of succinic acid, sodium succinate and its compounds with Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) were investigated employing simultaneous thermogravimetry and differential thermal analysis (TG-DTA) in nitrogen and carbon dioxide atmospheres and TG-FTIR in nitrogen atmosphere. On heating, in both atmospheres the succinic acid melt and evaporate, while for the sodium succinate the thermal decomposition occurs with the formation of sodium carbonate. For the transition metal succinates the final residue up to 1180 ºC in N2 atmosphere was a mixture of metal and metal oxide in no simple stoichiometric relation, except for Zn compound, where the residue was a small quantity of carbonaceous residue. For the CO2 atmosphere the final residue up to 980 ºC was: MnO, Fe3O4, CoO, ZnO and mixtures of Ni, NiO and Cu, Cu2O.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results shown in this thesis are based on selected publications of the 2000s decade. The work was carried out in several national and EC funded public research projects and in close cooperation with industrial partners. The main objective of the thesis was to study and quantify the most important phenomena of circulating fluidized bed combustors by developing and applying proper experimental and modelling methods using laboratory scale equipments. An understanding of the phenomena plays an essential role in the development of combustion and emission performance, and the availability and controls of CFB boilers. Experimental procedures to study fuel combustion behaviour under CFB conditions are presented in the thesis. Steady state and dynamic measurements under well controlled conditions were carried out to produce the data needed for the development of high efficiency, utility scale CFB technology. The importance of combustion control and furnace dynamics is emphasized when CFB boilers are scaled up with a once through steam cycle. Qualitative information on fuel combustion characteristics was obtained directly by comparing flue gas oxygen responses during the impulse change experiments with fuel feed. A one-dimensional, time dependent model was developed to analyse the measurement data Emission formation was studied combined with fuel combustion behaviour. Correlations were developed for NO, N2O, CO and char loading, as a function of temperature and oxygen concentration in the bed area. An online method to characterize char loading under CFB conditions was developed and validated with the pilot scale CFB tests. Finally, a new method to control air and fuel feeds in CFB combustion was introduced. The method is based on models and an analysis of the fluctuation of the flue gas oxygen concentration. The effect of high oxygen concentrations on fuel combustion behaviour was also studied to evaluate the potential of CFB boilers to apply oxygenfiring technology to CCS. In future studies, it will be necessary to go through the whole scale up chain from laboratory phenomena devices through pilot scale test rigs to large scale, commercial boilers in order to validate the applicability and scalability of the, results. This thesis shows the chain between the laboratory scale phenomena test rig (bench scale) and the CFB process test rig (pilot). CFB technology has been scaled up successfully from an industrial scale to a utility scale during the last decade. The work shown in the thesis, for its part, has supported the development by producing new detailed information on combustion under CFB conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellen har ett s.k. cytoskelett som bl.a. ger stadga åt cellen och deltar i dess form- och rörelsefunktioner. Intermediärfilamenten är en viktig del av cytoskelettet och de har länge varit kända för sina väsentliga roller i att upprätthålla den cellulära organisationen och vävnadernas integritet. På senare år har man insett att intermediärfilamenten har en större funktionell mångsidighet än man tidigare tänkts sig, i och med att en rad olika studier har visat betydelsen av intermediärfilamenten vid olika signaleringprocesser. Dessa proteinnätverk samverkar nämligen med kinaser och andra viktiga signalfaktorer och deltar därmed i cellens signaleringmaskineri. Intermediärfilamentproteinet nestin används ofta som en markör för stamceller men dess fysiologiska funktioner är i stort sett okända. Interaktion mellan nestin och ett signalkomplex bestående av cyklin-beroende kinas 5 (eng. Cyclin-dependent kinase, Cdk5) och dess aktivatorprotein p35 upptäcktes i vårt laboratorium före denna avhandling påbörjades. Därför var syftet med min avhandling att undersöka den funktionella betydelsen av nestin i regleringen av Cdk5/p35 komplexet. Cdk5 är ett multifunktionellt kinas som reglerar både utvecklingen och stressreaktioner i nerver och muskler. Vi visade att nestin skyddar neuronala stamceller under oxidativ stress genom dess förmåga att hämma Cdk5s skadliga aktivitet. Genom att förankra Cdk5/p35 komplexet, reglerar nestin den subcellulära lokaliseringen av Cdk5/p35 och minskar klyvningen av p35 till den mer stabila aktivatorn p25. Vi demonstrerade också aktiveringsmekanismen för Cdk5 under differentiering av muskelceller. Proteinkinas C zeta (PKCzeta) avslöjades ha en förmåga att accelera klyvningen av p35 till p25, och därmed öka aktiviteten hos Cdk5. Nestin kunde genom sin förmåga att reglera Cdk5 signalkomplexet styra muskelcellernas differentiering. Denna doktorsavhandling har på ett avgörande vis ökat förståelsen av de reglerande mekanismer som styr Cdk5 aktivering. Avhandling presenterar nestin och PKCzeta som kritiska faktorer i denna reglering. Vidare innehåller avhandlingen ny information om de cellulära funktionerna hos nestin som vi har visat vara en viktig reglerare av cellernas överlevnad och differentiering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, twomechanisms whichmake the systemstiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation are proposed. Generally, in hydraulic power transmission systems the orifice flow is clearly in the turbulent area. The flow becomes laminar as the pressure drop over the orifice approaches zero only in rare situations. These are e.g. when a valve is closed, or an actuator is driven against an end stopper, or external force makes actuator to switch its direction during operation. This means that in terms of accuracy, the description of laminar flow is not necessary. But, unfortunately, when a purely turbulent description of the orifice is used, numerical problems occur when the pressure drop comes close to zero since the first derivative of flow with respect to the pressure drop approaches infinity when the pressure drop approaches zero. Furthermore, the second derivative becomes discontinuous, which causes numerical noise and an infinitely small integration step when a variable step integrator is used. A numerically efficient model for the orifice flow is proposed using a cubic spline function to describe the flow in the laminar and transition areas. Parameters for the cubic spline function are selected such that its first derivative is equal to the first derivative of the pure turbulent orifice flow model in the boundary condition. In the dynamic simulation of fluid power circuits, a tradeoff exists between accuracy and calculation speed. This investigation is made for the two-regime flow orifice model. Especially inside of many types of valves, as well as between them, there exist very small volumes. The integration of pressures in small fluid volumes causes numerical problems in fluid power circuit simulation. Particularly in realtime simulation, these numerical problems are a great weakness. The system stiffness approaches infinity as the fluid volume approaches zero. If fixed step explicit algorithms for solving ordinary differential equations (ODE) are used, the system stability would easily be lost when integrating pressures in small volumes. To solve the problem caused by small fluid volumes, a pseudo-dynamic solver is proposed. Instead of integration of the pressure in a small volume, the pressure is solved as a steady-state pressure created in a separate cascade loop by numerical integration. The hydraulic capacitance V/Be of the parts of the circuit whose pressures are solved by the pseudo-dynamic method should be orders of magnitude smaller than that of those partswhose pressures are integrated. The key advantage of this novel method is that the numerical problems caused by the small volumes are completely avoided. Also, the method is freely applicable regardless of the integration routine applied. The superiority of both above-mentioned methods is that they are suited for use together with the semi-empirical modelling method which necessarily does not require any geometrical data of the valves and actuators to be modelled. In this modelling method, most of the needed component information can be taken from the manufacturer’s nominal graphs. This thesis introduces the methods and shows several numerical examples to demonstrate how the proposed methods improve the dynamic simulation of various hydraulic circuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to create and evaluate an intervention programme for Tanzanian children from a low-income area who are at risk of reading and writing difficulties. The learning difficulties, including reading and writing difficulties, are likely to be behind many of the common school problems in Tanzania, but they are not well understood, and research is needed. The design of the study included an identification and intervention phase with follow-up. A group based dynamic assessment approach was used in identifying children at risk of difficulties in reading and writing. The same approach was used in the intervention. The study was a randomized experiment with one experimental and two control groups. For the experimental and the control groups, a total of 96 (46 girls and 50 boys) children from grade one were screened out of 301 children from two schools in a low income urban area of Dar-es-Salaam. One third of the children, the experimental group, participated in an intensive training programme in literacy skills for five weeks, six hours per week, aimed at promoting reading and writing ability, while the children in the control groups had a mathematics and art programme. Follow-up was performed five months after the intervention. The intervention programme and the tests were based on the Zambian BASAT (Basic Skill Assessment Tool, Ketonen & Mulenga, 2003), but the content was drawn from the Kiswahili school curriculum in Tanzania. The main components of the training and testing programme were the same, only differing in content. The training process was different from traditional training in Tanzanian schools in that principles of teaching and training in dynamic assessment were followed. Feedback was the cornerstone of the training and the focus was on supporting the children in exploring knowledge and strategies in performing the tasks. The experimental group improved significantly more (p = .000) than the control groups during the intervention from pre-test to follow-up (repeated measures ANOVA). No differences between the control groups were noticed. The effect was significant on all the measures: phonological awareness, reading skills, writing skills and overall literacy skills. A transfer effect on school marks in Kiswahili and English was found. Following a discussion of the results, suggestions for further research and adaptation of the programme are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The consumption of manganese is increasing, but huge amounts of manganese still end up in waste in hydrometallurgical processes. The recovery of manganese from multi-metal solutions at low concentrations may not be economical. In addition, poor iron control typically prevents the production of high purity manganese. Separation of iron from manganese can be done with chemical precipitation or solvent extraction methods. Combined carbonate precipitation with air oxidation is a feasible method to separate iron and manganese due to the fast kinetics, good controllability and economical reagents. In addition the leaching of manganese carbonate is easier and less acid consuming than that of hydroxide or sulfide precipitates. Selective iron removal with great efficiency from MnSO4 solution is achieved by combined oxygen or air oxidation and CaCO3 precipitation at pH > 5.8 and at a redox potential of > 200 mV. In order to avoid gypsum formation, soda ash should be used instead of limestone. In such case, however, extra attention needs to be paid on the reagents mole ratios in order to avoid manganese coprecipitation. After iron removal, pure MnSO4 solution was obtained by solvent extraction using organophosphorus reagents, di-(2-ethylhexyl)phosphoric acid (D2EHPA) and bis(2,4,4- trimethylpentyl)phosphinic acid (CYANEX 272). The Mn/Ca and Mn/Mg selectivities can be increased by decreasing the temperature from the commonly used temperatures (40 –60oC) to 5oC. The extraction order of D2EHPA (Ca before Mn) at low temperature remains unchanged but the lowering of temperature causes an increase in viscosity and slower phase separation. Of these regents, CYANEX 272 is selective for Mn over Ca and, therefore, it would be the better choice if there is Ca present in solution. A three-stage Mn extraction followed by a two-stage scrubbing and two-stage sulfuric acid stripping is an effective method of producing a very pure MnSO4 intermediate solution for further processing. From the intermediate MnSO4 some special Mn- products for ion exchange applications were synthesized and studied. Three types of octahedrally coordinated manganese oxide materials as an alternative final product for manganese were chosen for synthesis: layer structured Nabirnessite, tunnel structured Mg-todorokite and K-kryptomelane. As an alternative source of pure MnSO4 intermediate, kryptomelane was synthesized by using a synthetic hydrometallurgical tailings. The results show that the studied OMS materials adsorb selectively Cu, Ni, Cd and K in the presence of Ca and Mg. It was also found that the exchange rates were reasonably high due to the small particle dimensions. Materials are stable in the studied conditions and their maximum Cu uptake capacity was 1.3 mmol/g. Competitive uptake of metals and acid was studied using equilibrium, batch kinetic and fixed-bed measurements. The experimental data was correlated with a dynamic model, which also accounts for the dissolution of the framework manganese. Manganese oxide micro-crystals were also bound onto silica to prepare a composite material having a particle size large enough to be used in column separation experiments. The MnOx/SiO2 ratio was found to affect significantly the properties of the composite. The higher the ratio, the lower is the specific surface area, the pore volume and the pore size. On the other hand, higher amount of silica binder gives composites better mechanical properties. Birnesite and todorokite can be aggregated successfully with colloidal silica at pH 4 and with MnO2/SiO2 weight ratio of 0.7. The best gelation and drying temperature was 110oC and sufficiently strong composites were obtained by additional heat-treatment at 250oC for 2 h. The results show that silica–supported MnO2 materials can be utilized to separate copper from nickel and cadmium. The behavior of the composites can be explained reasonably well with the presented model and the parameters estimated from the data of the unsupported oxides. The metal uptake capacities of the prepared materials were quite small. For example, the final copper loading was 0.14 mmol/gMnO2. According to the results the special MnO2 materials are potential for a specific environmental application to uptake harmful metal ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, general approach is devised to model electrolyte sorption from aqueous solutions on solid materials. Electrolyte sorption is often considered as unwanted phenomenon in ion exchange and its potential as an independent separation method has not been fully explored. The solid sorbents studied here are porous and non-porous organic or inorganic materials with or without specific functional groups attached on the solid matrix. Accordingly, the sorption mechanisms include physical adsorption, chemisorption on the functional groups and partition restricted by electrostatic or steric factors. The model is tested in four Cases Studies dealing with chelating adsorption of transition metal mixtures, physical adsorption of metal and metalloid complexes from chloride solutions, size exclusion of electrolytes in nano-porous materials and electrolyte exclusion of electrolyte/non-electrolyte mixtures. The model parameters are estimated using experimental data from equilibrium and batch kinetic measurements, and they are used to simulate actual single-column fixed-bed separations. Phase equilibrium between the solution and solid phases is described using thermodynamic Gibbs-Donnan model and various adsorption models depending on the properties of the sorbent. The 3-dimensional thermodynamic approach is used for volume sorption in gel-type ion exchangers and in nano-porous adsorbents, and satisfactory correlation is obtained provided that both mixing and exclusion effects are adequately taken into account. 2-Dimensional surface adsorption models are successfully applied to physical adsorption of complex species and to chelating adsorption of transition metal salts. In the latter case, comparison is also made with complex formation models. Results of the mass transport studies show that uptake rates even in a competitive high-affinity system can be described by constant diffusion coefficients, when the adsorbent structure and the phase equilibrium conditions are adequately included in the model. Furthermore, a simplified solution based on the linear driving force approximation and the shrinking-core model is developed for very non-linear adsorption systems. In each Case Study, the actual separation is carried out batch-wise in fixed-beds and the experimental data are simulated/correlated using the parameters derived from equilibrium and kinetic data. Good agreement between the calculated and experimental break-through curves is usually obtained indicating that the proposed approach is useful in systems, which at first sight are very different. For example, the important improvement in copper separation from concentrated zinc sulfate solution at elevated temperatures can be correctly predicted by the model. In some cases, however, re-adjustment of model parameters is needed due to e.g. high solution viscosity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to model mathematically and to simulate the dynamic behavior of an auger-type fertilizer applicator (AFA) in order to use the variable-rate application (VRA) and reduce the coefficient of variation (CV) of the application, proposing an angular speed controller θ' for the motor drive shaft. The input model was θ' and the response was the fertilizer mass flow, due to the construction, density of fertilizer, fill factor and the end position of the auger. The model was used to simulate a control system in open loop, with an electric drive for AFA using an armature voltage (V A) controller. By introducing a sinusoidal excitation signal in V A with amplitude and delay phase optimized and varying θ' during an operation cycle, it is obtained a reduction of 29.8% in the CV (constant V A) to 11.4%. The development of the mathematical model was a first step towards the introduction of electric drive systems and closed loop control for the implementation of AFA with low CV in VRA.