946 resultados para Driven Flow In A Cavity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we are studying possible invariants in hydrodynamics and hydromagnetics. The concept of flux preservation and line preservation of vector fields, especially vorticity vector fields, have been studied from the very beginning of the study of fluid mechanics by Helmholtz and others. In ideal magnetohydrodynamic flows the magnetic fields satisfy the same conservation laws as that of vorticity field in ideal hydrodynamic flows. Apart from these there are many other fields also in ideal hydrodynamic and magnetohydrodynamic flows which preserves flux across a surface or whose vector lines are preserved. A general study using this analogy had not been made for a long time. Moreover there are other physical quantities which are also invariant under the flow, such as Ertel invariant. Using the calculus of differential forms Tur and Yanovsky classified the possible invariants in hydrodynamics. This mathematical abstraction of physical quantities to topological objects is needed for an elegant and complete analysis of invariants.Many authors used a four dimensional space-time manifold for analysing fluid flows. We have also used such a space-time manifold in obtaining invariants in the usual three dimensional flows.In chapter one we have discussed the invariants related to vorticity field using vorticity field two form w2 in E4. Corresponding to the invariance of four form w2 ^ w2 we have got the invariance of the quantity E. w. We have shown that in an isentropic flow this quantity is an invariant over an arbitrary volume.In chapter three we have extended this method to any divergence-free frozen-in field. In a four dimensional space-time manifold we have defined a closed differential two form and its potential one from corresponding to such a frozen-in field. Using this potential one form w1 , it is possible to define the forms dw1 , w1 ^ dw1 and dw1 ^ dw1 . Corresponding to the invariance of the four form we have got an additional invariant in the usual hydrodynamic flows, which can not be obtained by considering three dimensional space.In chapter four we have classified the possible integral invariants associated with the physical quantities which can be expressed using one form or two form in a three dimensional flow. After deriving some general results which hold for an arbitrary dimensional manifold we have illustrated them in the context of flows in three dimensional Euclidean space JR3. If the Lie derivative of a differential p-form w is not vanishing,then the surface integral of w over all p-surfaces need not be constant of flow. Even then there exist some special p-surfaces over which the integral is a constant of motion, if the Lie derivative of w satisfies certain conditions. Such surfaces can be utilised for investigating the qualitative properties of a flow in the absence of invariance over all p-surfaces. We have also discussed the conditions for line preservation and surface preservation of vector fields. We see that the surface preservation need not imply the line preservation. We have given some examples which illustrate the above results. The study given in this thesis is a continuation of that started by Vedan et.el. As mentioned earlier, they have used a four dimensional space-time manifold to obtain invariants of flow from variational formulation and application of Noether's theorem. This was from the point of view of hydrodynamic stability studies using Arnold's method. The use of a four dimensional manifold has great significance in the study of knots and links. In the context of hydrodynamics, helicity is a measure of knottedness of vortex lines. We are interested in the use of differential forms in E4 in the study of vortex knots and links. The knowledge of surface invariants given in chapter 4 may also be utilised for the analysis of vortex and magnetic reconnections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work identifies the importance of plenum pressure on the performance of the data centre. The present methodology followed in the industry considers the pressure drop across the tile as a dependant variable, but it is shown in this work that this is the only one independent variable that is responsible for the entire flow dynamics in the data centre, and any design or assessment procedure must consider the pressure difference across the tile as the primary independent variable. This concept is further explained by the studies on the effect of dampers on the flow characteristics. The dampers have found to introduce an additional pressure drop there by reducing the effective pressure drop across the tile. The effect of damper is to change the flow both in quantitative and qualitative aspects. But the effect of damper on the flow in the quantitative aspect is only considered while using the damper as an aid for capacity control. Results from the present study suggest that the use of dampers must be avoided in data centre and well designed tiles which give required flow rates must be used in the appropriate locations. In the present study the effect of hot air recirculation is studied with suitable assumptions. It identifies that, the pressure drop across the tile is a dominant parameter which governs the recirculation. The rack suction pressure of the hardware along with the pressure drop across the tile determines the point of recirculation in the cold aisle. The positioning of hardware in the racks play an important role in controlling the recirculation point. The present study is thus helpful in the design of data centre air flow, based on the theory of jets. The air flow can be modelled both quantitatively and qualitatively based on the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rubber has become an indispensable material in Ocean technology. Rubber components play critical roles such as sealing, damping, environmental protection, electrical insulation etc. in most under water engineering applications. Technology driven innovations in electro acoustic transducers and other sophisticated end uses have enabled quantum jump in the quality and reliability of rubber components. Under water electro acoustic transducers use rubbers as a critical material in their construction. Work in this field has lead to highly reliable and high performance materials which has enhanced service life of transducers to the extent of 1015 years. Present work concentrates on these materials. Conventional rubbers are inadequate to meet many of the stringent functional of the requirements. There exists large gap of information in the rubber technology of under water rubbers, particularly in the context of under water electro acoustic transducers. Present study is towards filling up the gaps of information in this crucial area. The research work has been in the area of compounding and characterisation of rubbers for use in under water electro acoustic transducers. The study also covers specific material system such as encapsulation material, baffle material, seal material, etc. Life prediction techniques of under water rubbers in general has been established with reference to more than one functional property. This thesis is divided into 6 chapters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is an attempt to understand the important factors that control the occurrence, development and hydrochemical evolution of groundwater resources in sedimentary multi aquifer systems. The primary objective of this work is an integrated study of the hydrogeology and hydrochemistry with a view to elucidate the hydrochemical evolution of groundwater resources in the aquifer systems. The study is taken up in a typical coastal sedimentary aquifer system evolved under fluvio-marine environment in the coastal area of Kerala, known as the Kuttanad. The present study has been carried out to understand the aquifer systems, their inter relationships and evolution in the Kuttanad area of Kerala. The multi aquifer systems in the Kuttanad basin were formed from the sediments deposited under fluvio-marine and fluvial depositional environments and the marine transgressions and regressions in the geological past and palaeo climatic conditions influenced the hydrochemical environment in these aquifers. The evolution of groundwater and the hydrochemical processes involved in the formation of the present day water quality are elucidated from hydrochemical studies and the information derived from the aquifer geometry and hydraulic properties. Kuttanad area comprises of three types of aquifer systems namely phreatic aquifer underlain by Recent confined aquifer followed by Tertiary confined aquifers. These systems were formed by the deposition of sediments under fluvio-marine and fluvial environment. The study of the hydrochemical and hydraulic properties of the three aquifer systems proved that these three systems are separate entities. The phreatic aquifers in the area have low hydraulic gradients and high rejected recharge. The Recent confined aquifer has very poor hydraulic characteristics and recharge to this aquifer is very low. The Tertiary aquifer system is the most potential fresh water aquifer system in the area and the groundwater flow in the aquifer is converging towards the central part of the study area (Alleppey town) due to large scale pumping of water for water supply from this aquifer system. Mixing of waters and anthropogenic interferences are the dominant processes modifying the hydrochemistry in phreatic aquifers. Whereas, leaching of salts and cation exchange are the dominant processes modifying the hydrochemistry of groundwater in the confined aquifer system of Recent alluvium. Two significant chemical reactions modifying the hydrochemistry in the Recent aquifers are oxidation of iron in ferruginous clays which contributes hydrogen ions and the decomposition of organic matter in the aquifer system which consumes hydrogen ions. The hydrochemical environment is entirely different in the Tertiary aquifers as the groundwater in this aquifer system are palaeo waters evolved during various marine transgressions and regressions and these waters are being modified by processes of leaching of salts, cation exchange and chemical reactions under strong reducing environment. It is proved that the salinity observed in the groundwaters of Tertiary aquifers are not due to seawater mixing or intrusion, but due to dissolution of salts from the clay formations and ion exchange processes. Fluoride contamination in this aquifer system lacks a regional pattern and is more or less site specific in natureThe lowering of piezometric heads in the Tertiary aquifer system has developed as consequence of large scale pumping over a long period. Hence, puping from this aquifer system is to be regulated as a groundwater management strategy. Pumping from the Tertiary aquifers with high capacity pumps leads to well failures and mixing of saline water from the brackish zones. Such mixing zones are noticed from the hydrochemical studies. This is the major aquifer contamination in the Tertiary aquifer system which requires immediate attention. Usage of pumps above 10 HP capacities in wells taping Tertiary aquifers should be discouraged for sustainable development of these aquifers. The recharge areas need to be identified precisely for recharging the aquifer systems throughartificial means.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study describes a combined empirical/modeling approach to assess the possible impact of climate variability on rice production in the Philippines. We collated climate data of the last two decades (1985-2002) as well as yield statistics of six provinces of the Philippines, selected along a North-South gradient. Data from the climate information system of NASA were used as input parameters of the model ORYZA2000 to determine potential yields and, in the next steps, the yield gaps defined as the difference between potential and actual yields. Both simulated and actual yields of irrigated rice varied strongly between years. However, no climate-driven trends were apparent and the variability in actual yields showed no correlation with climatic parameters. The observed variation in simulated yields was attributable to seasonal variations in climate (dry/wet season) and to climatic differences between provinces and agro-ecological zones. The actual yield variation between provinces was not related to differences in the climatic yield potential but rather to soil and management factors. The resulting yield gap was largest in remote and infrastructurally disfavored provinces (low external input use) with a high production potential (high solar radiation and day-night temperature differences). In turn, the yield gap was lowest in central provinces with good market access but with a relatively low climatic yield potential. We conclude that neither long-term trends nor the variability of the climate can explain current rice yield trends and that agroecological, seasonal, and management effects are over-riding any possible climatic variations. On the other hand the lack of a climate-driven trend in the present situation may be superseded by ongoing climate change in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A key problem in object recognition is selection, namely, the problem of identifying regions in an image within which to start the recognition process, ideally by isolating regions that are likely to come from a single object. Such a selection mechanism has been found to be crucial in reducing the combinatorial search involved in the matching stage of object recognition. Even though selection is of help in recognition, it has largely remained unsolved because of the difficulty in isolating regions belonging to objects under complex imaging conditions involving occlusions, changing illumination, and object appearances. This thesis presents a novel approach to the selection problem by proposing a computational model of visual attentional selection as a paradigm for selection in recognition. In particular, it proposes two modes of attentional selection, namely, attracted and pay attention modes as being appropriate for data and model-driven selection in recognition. An implementation of this model has led to new ways of extracting color, texture and line group information in images, and their subsequent use in isolating areas of the scene likely to contain the model object. Among the specific results in this thesis are: a method of specifying color by perceptual color categories for fast color region segmentation and color-based localization of objects, and a result showing that the recognition of texture patterns on model objects is possible under changes in orientation and occlusions without detailed segmentation. The thesis also presents an evaluation of the proposed model by integrating with a 3D from 2D object recognition system and recording the improvement in performance. These results indicate that attentional selection can significantly overcome the computational bottleneck in object recognition, both due to a reduction in the number of features, and due to a reduction in the number of matches during recognition using the information derived during selection. Finally, these studies have revealed a surprising use of selection, namely, in the partial solution of the pose of a 3D object.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A lubrication-flow model for a free film in a corner is presented. The model, written in the hyperbolic coordinate system ξ = x² – y², η = 2xy, applies to films that are thin in the η direction. The lubrication approximation yields two coupled evolution equations for the film thickness and the velocity field which, to lowest order, describes plug flow in the hyperbolic coordinates. A free film in a corner evolving under surface tension and gravity is investigated. The rate of thinning of a free film is compared to that of a film evolving over a solid substrate. Viscous shear and normal stresses are both captured in the model and are computed for the entire flow domain. It is shown that normal stress dominates over shear stress in the far field, while shear stress dominates close to the corner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Turbulence statistics obtained by direct numerical simulations are analysed to investigate spatial heterogeneity within regular arrays of building-like cubical obstacles. Two different array layouts are studied, staggered and square, both at a packing density of λp=0.25 . The flow statistics analysed are mean streamwise velocity ( u− ), shear stress ( u′w′−−−− ), turbulent kinetic energy (k) and dispersive stress fraction ( u˜w˜ ). The spatial flow patterns and spatial distribution of these statistics in the two arrays are found to be very different. Local regions of high spatial variability are identified. The overall spatial variances of the statistics are shown to be generally very significant in comparison with their spatial averages within the arrays. Above the arrays the spatial variances as well as dispersive stresses decay rapidly to zero. The heterogeneity is explored further by separately considering six different flow regimes identified within the arrays, described here as: channelling region, constricted region, intersection region, building wake region, canyon region and front-recirculation region. It is found that the flow in the first three regions is relatively homogeneous, but that spatial variances in the latter three regions are large, especially in the building wake and canyon regions. The implication is that, in general, the flow immediately behind (and, to a lesser extent, in front of) a building is much more heterogeneous than elsewhere, even in the relatively dense arrays considered here. Most of the dispersive stress is concentrated in these regions. Considering the experimental difficulties of obtaining enough point measurements to form a representative spatial average, the error incurred by degrading the sampling resolution is investigated. It is found that a good estimate for both area and line averages can be obtained using a relatively small number of strategically located sampling points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes laboratory observations of inertia–gravity waves emitted from balanced fluid flow. In a rotating two-layer annulus experiment, the wavelength of the inertia–gravity waves is very close to the deformation radius. Their amplitude varies linearly with Rossby number in the range 0.05–0.14, at constant Burger number (or rotational Froude number). This linear scaling challenges the notion, suggested by several dynamical theories, that inertia–gravity waves generated by balanced motion will be exponentially small. It is estimated that the balanced flow leaks roughly 1% of its energy each rotation period into the inertia–gravity waves at the peak of their generation. The findings of this study imply an inevitable emission of inertia–gravity waves at Rossby numbers similar to those of the large-scale atmospheric and oceanic flow. Extrapolation of the results suggests that inertia–gravity waves might make a significant contribution to the energy budgets of the atmosphere and ocean. In particular, emission of inertia–gravity waves from mesoscale eddies may be an important source of energy for deep interior mixing in the ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Foggy air and clear air have appreciably different electrical conductivities. The conductivity gradient at horizontal droplet boundaries causes droplet charging, as a result of vertical current flow in the global atmospheric electrical circuit. The charging is poorly known, as both the current flow through atmospheric water droplet layers and the air conductivity are poorly characterised experimentally. Surface measurements during three days of continuous fog using new instrument techniques show that a shallow (of order 100 m deep) fog layer still permits the vertical conduction current to pass. Further, the conductivity in the fog is estimated to be approximately 20% lower than in clear air. Assuming a fog transition thickness of one metre, this implies a vertical conductivity gradient of order 10 fS m−2 at the boundary. The actual vertical conductivity gradient at a cloud boundary would probably be greater, due to the presence of larger droplets in clouds compared to fog, and cleaner, more conductive clear air aloft.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review briefly recent progress on understanding the role of surface waves on the marine atmospheric boundary layer and the ocean mixed layer and give a global perspective on these processes by analysing ERA-40 data. Ocean surface waves interact with the marine atmospheric boundary layer in two broad regimes: (i) the conventional wind-driven wave regime, when fast winds blow over slower moving waves, and (ii) a wave-driven wind regime when long wavelength swell propagates under low winds, and generates a wave-driven jet in the lower part of the marine boundary layer. Analysis of ERA-40 data indicates that the wave-driven wind regime is as prevalent as the conventional wind-driven regime. Ocean surface waves also change profoundly mixing in the ocean mixed layer through generation of Langmuir circulation. Results from large-eddy simulation are used here to develop a scaling for the resulting Langmuir turbulence, which is a necessary step in developing a parametrization of the process. ERA-40 data is then used to show that the Langmuir regime is the predominant regime over much of the global ocean, providing a compelling motivation for parameterising this process in ocean general circulation models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of lysimeter based experiments was carried out during 2000/01 to evaluate the impact of soil type and grassland management on potassium (K) leaching. The effects of (1) four soil textures (sand, loam, loam over chalk and clay), (2) grazing and cutting (with farmyard manure application), and (3) K applied as inorganic fertilizer, dairy slurry or a mixture of both sources were tested. Total K losses in the clay soil were more than twice those in the sand soil (13 and 6 kg K ha(-1), respectively) because of the development of preferential flow in the clay soil. They were also greater in the cut treatment than in the grazed treatment (82 and 51 kg K ha(-1), respectively; P less than or equal to0.01), associated with a 63% increase of K concentration in the leachates from the former (6.7 +/- 0.28 and 4.1 +/- 0.22 mg K L-1 for cut and grazed, respectively; P less than or equal to0.01) because of the K input from the farmyard manure. The source of fertilizer did not affect total K losses or the average K concentration in the leachates (P >0.05), but it changed the pattern of these over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flow in the world's oceans occurs at a wide range of spatial scales, from a fraction of a metre up to many thousands of kilometers. In particular, regions of intense flow are often highly localised, for example, western boundary currents, equatorial jets, overflows and convective plumes. Conventional numerical ocean models generally use static meshes. The use of dynamically-adaptive meshes has many potential advantages but needs to be guided by an error measure reflecting the underlying physics. A method of defining an error measure to guide an adaptive meshing algorithm for unstructured tetrahedral finite elements, utilizing an adjoint or goal-based method, is described here. This method is based upon a functional, encompassing important features of the flow structure. The sensitivity of this functional, with respect to the solution variables, is used as the basis from which an error measure is derived. This error measure acts to predict those areas of the domain where resolution should be changed. A barotropic wind driven gyre problem is used to demonstrate the capabilities of the method. The overall objective of this work is to develop robust error measures for use in an oceanographic context which will ensure areas of fine mesh resolution are used only where and when they are required. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analytical model is developed for the initial stage of surface wave generation at an air-water interface by a turbulent shear flow in either the air or in the water. The model treats the problem of wave growth departing from a flat interface and is relevant for small waves whose forcing is dominated by turbulent pressure fluctuations. The wave growth is predicted using the linearised and inviscid equations of motion, essentially following Phillips [Phillips, O.M., 1957. On the generation of waves by turbulent wind. J. Fluid Mech. 2, 417-445], but the pressure fluctuations that generate the waves are treated as unsteady and related to the turbulent velocity field using the rapid-distortion treatment of Durbin [Durbin, P.A., 1978. Rapid distortion theory of turbulent flows. PhD thesis, University of Cambridge]. This model, which assumes a constant mean shear rate F, can be viewed as the simplest representation of an oceanic or atmospheric boundary layer. For turbulent flows in the air and in the water producing pressure fluctuations of similar magnitude, the waves generated by turbulence in the water are found to be considerably steeper than those generated by turbulence in the air. For resonant waves, this is shown to be due to the shorter decorrelation time of turbulent pressure in the air (estimated as proportional to 1/Gamma), because of the higher shear rate existing in the air flow, and due to the smaller length scale of the turbulence in the water. Non-resonant waves generated by turbulence in the water, although being somewhat gentler, are still steeper than resonant waves generated by turbulence in the air. Hence, it is suggested that turbulence in the water may have a more important role than previously thought in the initiation of the surface waves that are subsequently amplified by feedback instability mechanisms.

Relevância:

100.00% 100.00%

Publicador: