998 resultados para Distemper virus
Detecção do melon yellowing associated virus (MYaV) em áreas produtoras de melão na Região Nordeste.
Resumo:
2009
Resumo:
2009
Resumo:
2008
Identificação do vírus do mosqueado do feijoeiro ("bean pod mottle virus") em soja no Brasil (2000).
Resumo:
O virus do mosqueado do feijoeiro ("bean pod mottle virus" BPMV) foi identificado em plantas da soja, cultivar Itiquira, com sintomas de mosqueado, em Planaltina, Distrito Federal. Uma preparacao purificada do virus examinada em microcospio eletronico revelou a presenca de particulas isometricas em torno de 30 nm de diametro. Em testes de SDS-PAGE, foram detectadas tres proteinas com massas moleculares estimadas de 39,7, 22,9 e 21,2 kDa. A eficiencia media de transmissao do isolado do BPMV em estudo pelo crisomelideo Cerotoma arcuata Oliv. Em tres experimentos foi de 66,7%. Em experimentos de campo, o BPMV reduziu a producao de graos nas cultivares de soja Garca Branca, Garimpo, Doko, Itiquira e Pioneira em 17,1% , 17,1%, 20,4%, 20,9% e 21,4%, respectivamente.
Resumo:
2001
Resumo:
Background: Chronic hepatitis C (CHC) has emerged as a leading cause of cirrhosis in the U. S. and across the world. To understand the role of apoptotic pathways in hepatitis C virus (HCV) infection, we studied the mRNA and protein expression patterns of apoptosis-related genes in peripheral blood mononuclear cells (PBMC) obtained from patients with HCV infection.Methods: the present study included 50 subjects which plasma samples were positive for HCV, but negative for human immunodeficiency virus (HIV) or hepatitis B virus (HBV). These cases were divided into four groups according to METAVIR, a score-based analysis which helps to interpret a liver biopsy according to the degree of inflammation and fibrosis. mRNA expression of the studied genes were analyzed by reverse transcription of quantitative polymerase chain reaction (RT-qPCR) and protein levels, analyzed by ELISA, was also conducted. HCV genotyping was also determined.Results: HCV infection increased mRNA expression and protein synthesis of caspase 8 in group 1 by 3 fold and 4 fold, respectively (p < 0.05). in group 4 HCV infection increased mRNA expression and protein synthesis of caspase 9 by 2 fold and 1,5 fold, respectively (p < 0.05). Also, caspase 3 mRNA expression and protein synthesis had level augumented by HCV infection in group 1 by 4 fold and 5 fold, respectively, and in group 4 by 6 fold and 7 fold, respectively (p < 0.05).Conclusions: HCV induces alteration at both genomic and protein levels of apoptosis markers involved with extrinsic and intrinsic pathways.
Resumo:
Ebolaviruses (EBOVs) are among the most virulent and deadly pathogens ever known, causing fulminant haemorrhagic fevers in humans and non-human primates. The 2014 outbreak of Ebola virus disease (EVD) in West Africa has claimed more lives than all previous EVD outbreaks combined. The EBOV high mortality rates have been related to the virus-induced impairment of the host innate immunity reaction due to two virus-coded proteins, VP24 and VP35. EBOV VP35 is a multifunctional protein, it is essential for viral replication as a component of the viral RNA polymerase and it also participates in nucleocapsid assembly. Early during EBOV infection, alpha-beta interferon (IFN-α/β) production would be triggered upon recognition of viral dsRNA products by cytoplasmic retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs). However, this recognition is efficiently prevented by the double-stranded RNA (dsRNA) binding activity of the EBOV VP35 protein, which hides RLRs binding sites on the dsRNA phosphate backbone as well the 5’-triphosphate (5’-ppp) dsRNA ends to RIG-I recognition. In addition to dsRNA binding and sequestration, EBOV VP35 inhibits IFN-α/β production preventing the activation of the IFN regulatory factor 3 (IRF-3) by direct interaction with cellular proteins. Previous studies demonstrated that single amino acid changes in the VP35 dsRNA binding domain reduce EBOV virulence, indicating that VP35 is an attractive target for antiviral drugs development. Within this context, here we report the establishment of a novel method to characterize the EBOV VP35 inhibitory function of the dsRNA-dependent RIG-I-mediated IFN-β signaling pathway in a BLS2 cell culture setting. In such system, a plasmid containing the promoter region of IFN-β gene linked with a luciferase reporter gene was transfected, together with a EBOV VP35 mammalian expression plasmid, into the IFN-sensitive A549 cell line, and the IFN-induction was stimulated through dsRNA transfection. Through alanine scanning mutational studies with biochemical, cellular and computational methods we highlighted the importance of some VP35 residues involved in dsRNA end-capping binding, such as R312, K282 and R322, that may serve as target for the development of small-molecule inhibitors against EBOV. Furthermore, we identified a synthetic compound that increased IFN-induction only under antiviral response stimulation and subverted VP35 inhibition, proving to be very attractive for the development of an antiviral drug. In conclusion, our results provide the establishment of a new assay as a straightforward tool for the screening of antiviral compounds that target i) dsRNA-VP35 or cellular protein-VP35 interaction and ii) dsRNA-dependent RIG-I-mediated IFN signaling pathway, in order to potentiate the IFN response against VP35 inhibition, setting the bases for further drug development.
Resumo:
El cáncer de cuello de útero o cáncer de cérvix es el segundo tumor más frecuente en las mujeres del mundo después del de mama y el quinto de todos los canceres. En España, es el sexto más frecuente, constituyendo el 4,8% de los canceres en la mujer. Este tipo de cáncer es el resultado final de una infección no resuelta por el virus del papiloma humano (VPH). Hoy en día, el VPH representa una de las infecciones de trasmisión sexual más común. El 70-80 % de hombres y mujeres sexualmente activos están o han estado expuestos al VPH. El cambio en la conducta sexual de las mujeres ha llevado a que las infecciones de trasmisión sexual sean ahora más frecuentes que en las generaciones anteriores. Hay un inicio más precoz de las primeras relaciones sexuales y un número más elevado de compañeros sexuales. Estos cambios han hecho aumentar la prevalencia del VPH en los últimos años en las mujeres jóvenes de España. La combinación de estrategias de prevención primaria (vacunación contra el VHP) y secundaria (cribado) permitiría reducir la incidencia y la mortalidad del cáncer de cuello de útero. Existen dos vacunas frente al VPH que son Gardasil ® y Cervarix ®. Al tratarse de dos vacunas nuevas, el éxito de la introducción dependerá de la comprensión apropiada de los riesgos y beneficios de la vacuna para prevenir la infección del VPH. Esto se consigue mediante programas efectivos de educación y formación sobre el VPH.
Resumo:
In order to present and understand the nature of modern terrorism it is important to realize its key properties as well the mechanisms that shape terrorism. Selected properties and mechanisms shaping modern terrorism which can be exemplified by the following: evolutionary nature of terrorism, asymmetry of terrorism, interferentiality of terrorism, multitude of components of terrorism, diffusion of terrorism, duality of terrorism, positive dimension of terrorism, terrorist as the system, diversity of terrorist activity goals, changeability of terrorist threat, the broad and narrow dimension of terrorism, counter-anti-terrorism, the confrontational and cooperational character of relations, calculation and operational strategy, disintegrational nature of terrorism, multidisciplinarity of terrorism, horizontal and vertical dimension of terrorism and a the few other traits or mechanisms.
Resumo:
Background: HIV infection leads to a decreasing immune response, thereby facilitating the appearance of other infections, one of the most important ones being HPV. However, studies are needed for determining associations between immunodeficiency caused by HIV and/or the presence of HPV during the course of cervical lesions and their degree of malignancy. This study describes the cytological findings revealed by the Papanicolaou test, laboratory characteristics and HPV molecular profile in women with and without HIV infection. Methods: A total of 216 HIV-positive and 1,159 HIV-negative women were invited to participate in the study; PCR was used for the molecular detection of HPV in cervical samples. Statistical analysis (such as percentages, Chi-square test and Fisher's exact test when applicable) determined human papillomavirus (HPV) infection frequency (single and multiple) and the distribution of six types of high-risk-HPV in women with and without HIV infection. Likewise, a logistic regression model was run to evaluate the relationship between HIV-HPV infection and different risk factors. Results: An association was found between the frequency of HPV infection and infection involving 2 or more HPV types (also known as multiple HPV infection) in HIV-positive women (69.0% and 54.2%, respectively); such frequency was greater than that found in HIV-negative women (44.3% and 22.7%, respectively). Statistically significant differences were observed between both groups (p = 0.001) regarding HPV presence (both in infection and multiple HPV infection). HPV-16 was the most prevalent type in the population being studied (p = 0.001); other viral types had variable distribution in both groups (HIV-positive and HIV-negative). HPV detection was associated with <500 cell/mm(3) CD4-count (p = 0.004) and higher HIV-viral-load (p = 0.001). HPV-DNA detection, <200 cell/mm(3) CD4-count (p = 0.001), and higher HIV-viral-load (p = 0.001) were associated with abnormal cytological findings. Conclusions: The HIV-1 positive population in this study had high multiple HPV infection prevalence. The results for this population group also suggested a greater association between HPV-DNA presence and cytological findings. HPV detection, together with low CD4 count, could represent useful tools for identifying HIV-positive women at risk of developing cervical lesions.
Resumo:
Vaccinia virus, the prototype member of the orthopoxviruses, is the largest and the most complex virus known. After replication of its genome and expression of the viral proteins, vaccinia undergoes a complicated assembly process which produces two distinct infectious forms. The first of these, the intracellular mature virus (IMV), develops from the immature virion (IV) after packaging of the genome and cleavage of the core proteins. During the transition of the IV to the IMV, a new core structure develops in the centre of the virion, concomitantly with the appearance of spike-like structures which extend between this core and the surrounding membranes of the IMV. I describe the characterization of p39 (gene A4L) which is hypothesized to be one component of these spikes. p39 is a core protein, but has strong associations with the membranes surrounding the IMV, possibly due to an interaction with p21 (A17L). Due to its location between the core and the membranes of the IMV, p39 is ideally situated to act as a matrix-like linker protein and may play a role in the formation of the core during the transition of the IV to the IMV. The IMV is subsequently wrapped by a membrane cisterna derived from the trans Golgi network, to form the intracellular enveloped virus (IEV). I show that the IEV can co-opt the actin cytoskeleton of the host cell in order to induce the formation of actin tails which extend from one side of the virion. These actin tails propel the virus particle, both intra- and intercellularly, at speeds of up to 2.8µm/min. On reaching the plasma membrane, the virus particles project out from the cell surface at the tip of virally induced microvilli. The outer membrane of the IEV is thought to fuse with the plasma membrane at the tip of these projections, thus exposing the second infectious form of vaccinia. This is thought to be the means by which the cell-associated enveloped virus is presented to neighbouring cells, thereby facilitating the direct cell-to-cell spread of virus particles.
Resumo:
To evaluate the immunogenicity and safety of a 23-valent pneumococcal vaccine in human immunodeficiency virus (HIV)-seropositive patients, 80 men and 18 women received 1 dose of the vaccine (Pneumo 23; Pasteur Mérieux MSD, Brussels). The total IgG antibody response against all 23 Streptococcus pneumoniae capsular antigens was measured. Antibody levels were expressed in arbitrary units per microliter, referring to a standard curve. Geometric mean titers of the total IgG capsular antibodies on the day of vaccination and 30-45 days later were compared. The ratios of titers after and before vaccination in patients with > 500, 200-500, and < 200 CD4 lymphocytes/microL were 10, 10, and 12.6, respectively. Nonresponse (ratio < 4) occurred in 17% of patients and was unrelated to CD4 cell count. The vaccine was well tolerated; no serious side effects occurred. In 83% of the patients with HIV infection, the total antipneumococcal IgG level was higher after vaccination.
Resumo:
Bacterial lipopolysaccharide (endotoxin) is a frequent contaminant of biological specimens and is also known to be a potent inducer of beta-chemokines and other soluble factors that inhibit HIV-1 infection in vitro. Though lipopolysaccharide (LPS) has been shown to stimulate the production of soluble HIV-1 inhibitors in cultures of monocyte-derived macrophages, the ability of LPS to induce similar inhibitors in other cell types is poorly characterized. Here we show that LPS exhibits potent anti-HIV activity in phytohemagglutinin-stimulated peripheral blood mononuclear cells (PBMCs) but has no detectable anti-HIV-1 activity in TZM-bl cells. The anti-HIV-1 activity of LPS in PBMCs was strongly associated with the production of beta-chemokines from CD14-positive monocytes. Culture supernatants from LPS-stimulated PBMCs exhibited potent anti-HIV-1 activity when added to TZM-bl cells but, in this case, the antiviral activity appeared to be related to IFN-gamma rather than to beta-chemokines. These observations indicate that LPS stimulates PBMCs to produce a complex array of soluble HIV-1 inhibitors, including beta-chemokines and IFN-gamma, that differentially inhibit HIV-1 depending on the target cell type. The results also highlight the need to use endotoxin-free specimens to avoid artifacts when assessing HIV-1-specific neutralizing antibodies in PBMC-based assays.
Resumo:
The array of human immunodeficiency virus (HIV) subtypes encountered in East London, an area long associated with migration, is unusually heterogeneous, reflecting the diverse geographical origins of the population. In this study it was shown that viral subtypes or clades infecting a sample of HIV type 1 (HIV-1)-positive individuals in East London reflect the global pandemic. The authors studied the humoral response in 210 treatment-naïve chronically HIV-1-infected (>1 year) adult subjects against a panel of 12 viruses from six different clades. Plasmas from individuals infected with clade C, but also plasmas from clade A, and to a lesser degree clade CRF02_AG and CRF01_AE, were significantly more potent at neutralizing the tested viruses compared with plasmas from individuals infected with clade B. The difference in humoral robustness between clade C- and B-infected patients was confirmed in titration studies with an extended panel of clade B and C viruses. These results support the approach to develop an HIV-1 vaccine that includes clade C or A envelope protein (Env) immunogens for the induction of a potent neutralizing humoral response.
Resumo:
Like human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus of chimpanzees (SIVcpz) can cause CD4+ T cell loss and premature death. Here, we used molecular surveillance tools and mathematical modeling to estimate the impact of SIVcpz infection on chimpanzee population dynamics. Habituated (Mitumba and Kasekela) and non-habituated (Kalande) chimpanzees were studied in Gombe National Park, Tanzania. Ape population sizes were determined from demographic records (Mitumba and Kasekela) or individual sightings and genotyping (Kalande), while SIVcpz prevalence rates were monitored using non-invasive methods. Between 2002-2009, the Mitumba and Kasekela communities experienced mean annual growth rates of 1.9% and 2.4%, respectively, while Kalande chimpanzees suffered a significant decline, with a mean growth rate of -6.5% to -7.4%, depending on population estimates. A rapid decline in Kalande was first noted in the 1990s and originally attributed to poaching and reduced food sources. However, between 2002-2009, we found a mean SIVcpz prevalence in Kalande of 46.1%, which was almost four times higher than the prevalence in Mitumba (12.7%) and Kasekela (12.1%). To explore whether SIVcpz contributed to the Kalande decline, we used empirically determined SIVcpz transmission probabilities as well as chimpanzee mortality, mating and migration data to model the effect of viral pathogenicity on chimpanzee population growth. Deterministic calculations indicated that a prevalence of greater than 3.4% would result in negative growth and eventual population extinction, even using conservative mortality estimates. However, stochastic models revealed that in representative populations, SIVcpz, and not its host species, frequently went extinct. High SIVcpz transmission probability and excess mortality reduced population persistence, while intercommunity migration often rescued infected communities, even when immigrating females had a chance of being SIVcpz infected. Together, these results suggest that the decline of the Kalande community was caused, at least in part, by high levels of SIVcpz infection. However, population extinction is not an inevitable consequence of SIVcpz infection, but depends on additional variables, such as migration, that promote survival. These findings are consistent with the uneven distribution of SIVcpz throughout central Africa and explain how chimpanzees in Gombe and elsewhere can be at equipoise with this pathogen.