996 resultados para Differential fluoresence induction
Resumo:
In this paper we establish the existence and uniqueness of a solution for different types of stochastic differential equation with random initial conditions and random coefficients. The stochastic integral is interpreted as a generalized Stratonovich integral, and the techniques used to derive these results are mainly based on the path properties of the Brownian motion, and the definition of the Stratonovich integral.
Resumo:
We consider the Cauchy problem for a stochastic delay differential equation driven by a fractional Brownian motion with Hurst parameter H>¿. We prove an existence and uniqueness result for this problem, when the coefficients are sufficiently regular. Furthermore, if the diffusion coefficient is bounded away from zero and the coefficients are smooth functions with bounded derivatives of all orders, we prove that the law of the solution admits a smooth density with respect to Lebesgue measure on R.
Resumo:
Aquaporin 9 facilitates the diffusion of water but also glycerol and monocarboxylates, known as brain energy substrates. AQP9 was recently observed in catecholaminergic neurons that are implicated in energy homeostasis and also possibly in neuroendocrine effects of diabetes. Recently it has been observed that the level of AQP9 expression in hepatocytes is sensitive to the blood concentration of insulin. Furthermore, insulin injection in the brain is known to be related to the energy homeostasis. Based on these observations, we investigated if the concentration of insulin affects the level of brain AQP9 expression and if so, in which cell types. This study has been carried out, in a model of the diabetic rat generated by streptozotocin injection and on brainstem slices. In diabetic rats showing a decrease in systemic insulin concentration, AQP9 is only increased in brain areas containing catecholaminergic neurons. In contrast, no significant change is detected in the cerebral cortex and the cerebellum. Using immunocytochemistry, we are able to show that the increase in AQP9 expression is specifically present in catecholaminergic neurons. In brainstem slice cultures, 2 microM insulin induces a significant decrease in AQP9 protein levels 6 h after application, suggesting that brain AQP9 is also regulated by the insulin. These results show that the level of expression of brain AQP9 is affected by variations of the concentration of insulin in a diabetic model and in vitro.
Resumo:
OBJECTIVE: Prospective non-randomised comparison of full-thickness pedicled diaphragm flap with intercostal muscle flap in terms of morbidity and efficiency for bronchial stump coverage after induction therapy followed by pneumonectomy for non-small cell lung cancer (NSCLC). METHODS: Between 1996 and 1998, a consecutive series of 26 patients underwent pneumonectomy following induction therapy. Half of the patients underwent mediastinal reinforcement by use of a pedicled intercostal muscle flap (IF) and half of the patients by use of a pedicled full-thickness diaphragm muscle flap (DF). Patients in both groups were matched according to age, gender, side of pneumonectomy and stage of NSCLC. Postoperative morbidity and mortality were recorded. Six months follow-up including physical examination and pulmonary function testing was performed to examine the incidence of bronchial stump fistulae, gastro-esophageal disorders or chest wall complaints. RESULTS: There was no 30-day mortality in both groups. Complications were observed in one of 13 patients after IF and five of 13 after DF including pneumonia in two (one IF and one DF), visceral herniations in three (DF) and bronchopleural fistula in one patient (DF). There were no symptoms of gastro-esophageal reflux disease (GERD). Postoperative pulmonary function testing revealed no significant differences between the two groups. CONCLUSIONS: Pedicled intercostal and diaphragmatic muscle flaps are both valuable and effective tools for prophylactic mediastinal reinforcement following induction therapy and pneumonectomy. In our series of patients, IF seemed to be associated with a smaller operation-related morbidity than DF, although the difference was not significant. Pedicled full-thickness diaphragmatic flaps may be indicated after induction therapy and extended pneumonectomy with pericardial resection in order to cover the stump and close the pericardial defect since they do not adversely influence pulmonary function.
Resumo:
Immunogenicity of a long 20-mer NY-ESO-1f peptide vaccine was evaluated in a lung cancer patient TK-f01, immunized with the peptide with Picibanil OK-432 and Montanide ISA-51. We showed that internalization of the peptide was necessary to present CD8 T-cell epitopes on APC, contrasting with the direct presentation of the short epitope. CD8 T-cell responses restricted to all five HLA class I alleles were induced in the patient after the peptide vaccination. Clonal analysis showed that B*35:01 and B*52:01-restricted CD8 T-cell responses were the two dominant responses. The minimal epitopes recognized by A*24:02, B*35:01, B*52:01 and C*12:02-restricted CD8 T-cell clones were defined and peptide/HLA tetramers were produced. NY-ESO-1 91-101 on A*24:02, NY-ESO-1 92-102 on B*35:01, NY-ESO-1 96-104 on B*52:01 and NY-ESO-1 96-104 on C*12:02 were new epitopes first defined in this study. Identification of the A*24:02 epitope is highly relevant for studying the Japanese population because of its high expression frequency (60%). High affinity CD8 T-cells recognizing tumor cells naturally expressing the epitopes and matched HLA were induced at a significant level. The findings suggest the usefulness of a long 20-mer NY-ESO-1f peptide harboring multiple CD8 T-cell epitopes as an NY-ESO-1 vaccine. Characterization of CD8 T-cell responses in immunomonitoring using peptide/HLA tetramers revealed that multiple CD8 T-cell responses comprised the dominant response.
Resumo:
Purpose To reduce the incidence of febrile neutropenia during rapid COJEC (cisplatin, vincristine, carboplatin, etoposide, and cyclophosphamide given in a rapid delivery schedule) induction. In the High-Risk Neuroblastoma-1 (HR-NBL1) trial, the International Society of Paediatric Oncology European Neuroblastoma Group (SIOPEN) randomly assigned patients to primary prophylactic (PP) versus symptom-triggered granulocyte colony-stimulating factor (GCSF; filgrastim). Patients and Methods From May 2002 to November 2005, 239 patients in 16 countries were randomly assigned to receive or not receive PPGCSF. There were 144 boys with a median age of 3.1 years (range, 1 to 17 years) of whom 217 had International Neuroblastoma Staging System (INSS) stage 4 and 22 had stage 2 or 3 MYCN-amplified disease. The prophylactic arm received a single daily dose of 5 μg/kg GCSF, starting after each of the eight COJEC chemotherapy cycles and stopping 24 hours before the next cycle. Chemotherapy was administered every 10 days regardless of hematologic recovery, provided that infection was controlled. Results The PPGCSF arm had significantly fewer febrile neutropenic episodes (P = .002), days with fever (P = .004), hospital days (P = .017), and antibiotic days (P = .001). Reported Common Toxicity Criteria (CTC) graded toxicity was also significantly reduced: infections per cycle (P = .002), fever (P < .001), severe leucopenia (P < .001), neutropenia (P < .001), mucositis (P = .002), nausea/vomiting (P = .045), and constipation (P = .008). Severe weight loss was reduced significantly by 50% (P = .013). Protocol compliance with the rapid induction schedule was also significantly better in the PPGCSF arm shown by shorter time to completion (P = .005). PPGCSF did not adversely affect response rates or success of peripheral-blood stem-cell harvest. Following these results, PPG-GSF was advised for all patients on rapid COJEC induction.
Resumo:
ABSTRACT Application of salicylic acid induces systemic acquired resistance in tobacco. pchA and pchB, which encode for the biosynthesis of salicylic acid in Pseudomonas aeruginosa, were cloned into two expression vectors, and these constructs were introduced into two root-colonizing strains of P. fluorescens. Introduction of pchBA into strain P3, which does not produce salicylic acid, rendered this strain capable of salicylic acid production in vitro and significantly improved its ability to induce systemic resistance in tobacco against tobacco necrosis virus. Strain CHA0 is a well-described biocontrol agent that naturally produces salicylic acid under conditions of iron limitation. Introduction of pchBA into CHA0 increased the production of salicylic acid in vitro and in the rhizosphere of tobacco, but did not improve the ability of CHA0 to induce systemic resistance in tobacco. In addition, these genes did not improve significantly the capacity of strains P3 and CHA0 to suppress black root rot of tobacco in a gnotobiotic system.
Resumo:
The earliest sign of neurotoxicity observed after exposure of three-dimensional brain cell cultures to low concentrations of mercury compounds is a microglial reaction. We hypothesized that an induction of apoptosis by mercury compounds could be an activating signal of the microglial reaction. Aggregating brain cell cultures of fetal rat telencephalon were treated for 10 days with either mercury chloride or monomethylmercury chloride at noncytotoxic concentrations during two developmental periods: from day 5 to 15, corresponding to an immature stage, and from day 25 to 35 corresponding to a mature stage. Apoptosis was evaluated by the TUNEL technique. It was found that both mercury compounds caused a significant increase in the number of apoptotic cells, but exclusively in immature cultures exhibiting also spontaneous apoptosis. Double staining by the TUNEL technique combined with either neuronal or astroglial markers revealed that the proportion of cells undergoing apoptosis was highest for astrocytes. Furthermore neither an association nor a colocalization was found between apoptotic cells and microglial cells. In conclusion, it appears that the induction of apoptosis by mercury compounds in immature cells is only an acceleration of a spontaneously occurring process, and that it is not a directly related to the early microglial reaction.
Resumo:
A fetal rat telencephalon organotypic cell culture system was found to reproduce the developmental pattern of Na-K-adenosinetriphosphatase (ATPase) gene expression observed in vivo [Am. J. Physiol. 258 (Cell Physiol. 27): C1062-C1069, 1990]. We have used this culture system to study the effects of triiodothyronine (T3; 0.003-30 nM) on mRNA abundance and basal transcription rates of Na-K-ATPase isoforms. Steady-state mRNA levels were low at culture day 6 (corresponding to the day of birth) but distinct for each isoform alpha 3 much greater than beta 1 = beta 2 greater than alpha 2 greater than alpha 1. At culture day 6, T3 did not modify mRNA abundance of any isoform. At culture day 12 (corresponding to day 7 postnatal), T3 increased the mRNA level of alpha 2 (4- to 7-fold), beta 2 (4- to 5-fold), alpha 1 (3- to 6-fold), and beta 1 (1.5-fold), whereas alpha 3 mRNA levels remained unchanged. Interestingly, the basal transcription rate for each isoform differed strikingly (alpha 2 greater than alpha 1 much greater than beta 1 = beta 2 greater than alpha 3) but remained stable throughout 12 days of culture and was not regulated by T3. Thus we observed an inverse relationship between rate of transcription and rate of mRNA accumulation for each alpha-isoform, suggesting that alpha 1- and alpha 2-mRNA are turning over rapidly whereas alpha 3-mRNA is turning over slowly. Our data indicate that one of the mechanisms by which T3 selectively controls Na-K-ATPase gene expression during brain development in vitro occurs at the posttranscriptional level.
Resumo:
Partitioning of proteins in cholesterol and sphingolipid enriched plasma membrane microdomains, called lipid rafts, is critical for many signal transduction and protein sorting events. Although raft partitioning of many signaling molecules remains to be determined, glycosylphosphatidyl-inositol (GPI)-anchored proteins possess high affinity for lipid rafts and are currently exploited as markers to investigate fundamental mechanisms in protein sorting and signal transduction events. In this study, we demonstrate that two recombinant GPI-anchored green fluorescent proteins (GFP-GPIs) that differ in their GPI signal sequence confer distinct localization in plasma membrane microdomains. GFP fused to the GPI signal of the decay accelerating factor GFP-GPI(DAF) partitioned exclusively in lipid rafts, whereas GFP fused to the GPI signal of TRAIL-R3, GFP-GPI(TRAIL-R3), associated only minimally with microdomains. In addition, we investigated the unique ability of purified GFP-GPIs to insert into membrane microdomains of primary lymphocytes. This cell surface painting allows rapid, stable, and functional association of the GPI-anchored proteins with the target cell plasma membrane. The distinct membrane localization of the two GFP-GPIs was observed irrespective of whether the GPI-anchored molecules were painted or transfected. Furthermore, we show that painted GFP-GPI(DAF) was totally dependent on the GPI anchor and that the membrane insertion was increased by the addition of raft-associated lipids such as cholesterol, sphingomyelin, and dipalmitoyl-phosphatidylethanolamine. Thus, this study provides evidence that different GPI signal sequences lead to distinct membrane microdomain localization and that painted GFP-GPI(DAF) serves as an excellent fluorescent marker for lipid rafts in live cells.
Resumo:
Cervical cancer, the second leading cause of cancer mortality in women worldwide, results from infection with a subset of human papillomaviruses (HPV), HPV-16 being the most prevalent type. The available prophylactic vaccines are an effective strategy to prevent this cancer in the long term. However, they only target 70-80% of all cervical cancers and cannot control existing HPV infections and associated lesions. Therapeutic vaccines are thus necessary for women who cannot benefit from prophylactic vaccination. Induction of protective immune responses in the genital mucosa (GM) may be crucial for efficacy of HPV therapeutic vaccines. We report here that mice that received a single subcutaneous (s.c.) vaccination of an adjuvanted long synthetic HPV16 E7(1-98) polypeptide showed induction of 100% tumor protection against s.c. TC-1 tumors and that tumor regression was mainly provided by CD8 T cells. In vivo cytotoxic assay revealed high E7-specific cytolytic T lymphocytes activity in spleen and in genital draining lymph nodes (LN), and E7-specific CD8 T cells could be detected in GM by tetramer staining. More importantly, high-avidity E7-specific INF-gamma secreting CD8 T cells were induced not only in blood, spleen and LN but also in GM of vaccinated mice, thus providing evidence that a parenteral vaccination may be sufficient to provide regression of genital tumors. In addition, there was no correlation between the responses measured in blood with those measured in GM, highlighting the necessity and relevance to determine the immune responses in the mucosa where HPV-tumors reside.
Resumo:
Seed from the sensitive wheat (Triticum aestivumL.) cultivar Anahuac was treated to gamma-ray irradiation and eleven Al3+ tolerant mutants selected. The objective was to compare these mutants to the original Anahuac and to the tolerant wheat cultivars IAC-24 and IAC-60 from 1994 to 1996 in acid (Capão Bonito) and limed (Monte Alegre do Sul) soil field trials, in the State of São Paulo, Brazil. Grain yield and agronomic characteristics were analyzed. All the mutant lines yielded higher than the sensitive Anahuac cultivar in the acid soils of Capão Bonito. Under limed soil conditions, 10 mutants had a similar yield to the original sensitive cultivar and one a lower yield. The majority of the mutants were similar in yield to the tolerant cultivars IAC-24 and IAC-60 under both conditions. Some of the mutants showed altered agronomic characteristics, but these alterations did not generally influence the grain yield. The results indicated that tolerant lines with good characteristics may be obtained from a susceptible cultivar by mutation induction, thus allowing cropping under conditions where Al3 + is a limiting factor.
Resumo:
The main scope of this work was to detect (Panicum maximum Jacq.) genotype differences as to morphoagronomic and seed quality indices, and to establish character correlations useful for determining vegetative and reproductive trends. Besides the flowering cycle, eight phenological and two seed quality traits were scored in a greenhouse randomized complete block experiment, as follows: plant height (PH), reproductive tiller number/overall tiller number (RTN/OTN), panicle number/reproductive tillers (PN/RT), leaf length (LL), leaf width (LW), panicle length (PL), fresh weight (FW), dry weight (DW), number of seeds/g (NS/G) and seed sample physical purity (SPP). Very-early and early-flowering hybrids consistently showed the highest correlation values among flowering cycle and RTN/OTN (r = -0.59**), PN/RT (r = -0.48**), NS/G (r = -0.88**) and SPP (r = -0.80**) (reproductive parameters) while intermediate and late-flowering hybrids presented the highest values for LL (r = 0.53**), LW (r = 0.60**), PL (r = 0.77**), FW (r = 0.78**) and DW (r = 0.85**) (vegetative traits). The implications of these results for plant breeding and forage management purposes are discussed.
Resumo:
Our understanding of how genotype determines phenotype in primary dystonia is limited. Familial young-onset primary dystonia is commonly due to the DYT1 gene mutation. A critical question, given the 30% penetrance of clinical symptoms in DYT1 mutation carriers, is why the same genotype leads to differential clinical expression and whether non-DYT1 adult-onset primary dystonia, with and without family history share pathophysiological mechanisms with DYT1 dystonia. This study examines the relationship between dystonic phenotype and the DYT1 gene mutation by monitoring whole-brain structure using voxel-based morphometry. We acquired magnetic resonance imaging data of symptomatic and asymptomatic DYT1 mutation carriers, of non-DYT1 primary dystonia patients, with and without family history and control subjects with normal DYT1 alleles. By crossing the factors genotype and phenotype we demonstrate a significant interaction in terms of brain anatomy confined to the basal ganglia bilaterally. The explanation for this effect differs according to both gene and dystonia status: non-DYT1 adult-onset dystonia patients and asymptomatic DYT1 carriers have significantly larger basal ganglia compared to healthy subjects and symptomatic DYT1 mutation carriers. There is a significant negative correlation between severity of dystonia and basal ganglia size in DYT1 mutation carriers. We propose that differential pathophysiological and compensatory mechanisms lead to brain structure changes in non-DYT1 primary adult-onset dystonias and DYT1 gene carriers. Given the range of age of onset, there may be differential genetic modulation of brain development that in turn determines clinical expression. Alternatively, a DYT1 gene dependent primary defect of motor circuit development may lead to stress-induced remodelling of the basal ganglia and hence dystonia.