890 resultados para Detecção de faltas
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2015.
Resumo:
Dissertação de Mestrado apresentada ao Instituto Superior de Psicologia Aplicada para obtenção de grau de Mestre na especialidade de Psicologia Clínica.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2016.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, 2016.
Resumo:
Dissertação de Mestrado, Geomática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Dissertação de Mestrado Integrado em Medicina Veterinária
Resumo:
2015
Resumo:
Objetivou-se, por meio desta pesquisa, ampliar o conhecimento das relações bióticas dos ambientes naturais de ocorrência de castanheiras nativas no Amazonas.
Resumo:
2016
Resumo:
Resumo: Diversos surtos de Salmonella ocasionados pelo consumo de tomate contaminados com este micro-organismo têm sido relatados ultimamente, o que torna primordial a investigação sobre a presença desse patógeno nesse alimento. Métodos que permitam a avaliação rápida da presença de Salmonella em alimentos são de suma importância. O objetivo desse estudo foi comparar o método tradicional da Food and Drug Administration - Bacteriologycal Analytical Manual (FDA-BAM) com um método rápido da mini Vitek Immuno Diagnostic System Assay (Mini?Vidas-SLM)-bioMérieux, para detecção de Salmonella Brazil inoculada artificialmente na superfície de tomates. Foram analisadas 215 amostras de tomates inoculadas artificialmente com Salmonella Brazil com níveis de inóculos variando de 0,4 a 940 UFC/tomate. Os resultados obtidos mostraram que os métodos estudados apresentaram uma ótima concordância entre si, para todas as faixas de inóculo analisadas.
Resumo:
This master dissertation presents the study and implementation of inteligent algorithms to monitor the measurement of sensors involved in natural gas custody transfer processes. To create these algoritmhs Artificial Neural Networks are investigated because they have some particular properties, such as: learning, adaptation, prediction. A neural predictor is developed to reproduce the sensor output dynamic behavior, in such a way that its output is compared to the real sensor output. A recurrent neural network is used for this purpose, because of its ability to deal with dynamic information. The real sensor output and the estimated predictor output work as the basis for the creation of possible sensor fault detection and diagnosis strategies. Two competitive neural network architectures are investigated and their capabilities are used to classify different kinds of faults. The prediction algorithm and the fault detection classification strategies, as well as the obtained results, are presented
Resumo:
The transport of fluids through pipes is used in the oil industry, being the pipelines an important link in the logistics flow of fluids. However, the pipelines suffer deterioration in their walls caused by several factors which may cause loss of fluids to the environment, justifying the investment in techniques and methods of leak detection to minimize fluid loss and environmental damage. This work presents the development of a supervisory module in order to inform to the operator the leakage in the pipeline monitored in the shortest time possible, in order that the operator log procedure that entails the end of the leak. This module is a component of a system designed to detect leaks in oil pipelines using sonic technology, wavelets and neural networks. The plant used in the development and testing of the module presented here was the system of tanks of LAMP, and its LAN, as monitoring network. The proposal consists of, basically, two stages. Initially, assess the performance of the communication infrastructure of the supervisory module. Later, simulate leaks so that the DSP sends information to the supervisory performs the calculation of the location of leaks and indicate to which sensor the leak is closer, and using the system of tanks of LAMP, capture the pressure in the pipeline monitored by piezoresistive sensors, this information being processed by the DSP and sent to the supervisory to be presented to the user in real time
Resumo:
This work presents a proposal to detect interface in atmospheric oil tanks by installing a differential pressure level transmitter to infer the oil-water interface. The main goal of this project is to maximize the quantity of free water that is delivered to the drainage line by controlling the interface. A Fuzzy Controller has been implemented by using the interface transmitter as the Process Variable. Two ladder routine was generated to perform the control. One routine was developed to calculate the error and error variation. The other was generate to develop the fuzzy controller itself. By using rules, the fuzzy controller uses these variables to set the output. The output is the position variation of the drainage valve. Although the ladder routine was implemented into an Allen Bradley PLC, Control Logix family it can be implemented into any brand of PLCs
Resumo:
A presente publicação descreve os procedimentos necessários para a identificação e confirmação molecular de estirpes de S. aureus causadoras de mastite subclínica, provenientes de amostras de leite de cabra, por meio da técnica de RT-PCR.
Resumo:
2009