925 resultados para Data clustering. Fuzzy C-Means. Cluster centers initialization. Validation indices


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The K-Means algorithm for cluster analysis is one of the most influential and popular data mining methods. Its straightforward parallel formulation is well suited for distributed memory systems with reliable interconnection networks. However, in large-scale geographically distributed systems the straightforward parallel algorithm can be rendered useless by a single communication failure or high latency in communication paths. This work proposes a fully decentralised algorithm (Epidemic K-Means) which does not require global communication and is intrinsically fault tolerant. The proposed distributed K-Means algorithm provides a clustering solution which can approximate the solution of an ideal centralised algorithm over the aggregated data as closely as desired. A comparative performance analysis is carried out against the state of the art distributed K-Means algorithms based on sampling methods. The experimental analysis confirms that the proposed algorithm is a practical and accurate distributed K-Means implementation for networked systems of very large and extreme scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The K-Means algorithm for cluster analysis is one of the most influential and popular data mining methods. Its straightforward parallel formulation is well suited for distributed memory systems with reliable interconnection networks, such as massively parallel processors and clusters of workstations. However, in large-scale geographically distributed systems the straightforward parallel algorithm can be rendered useless by a single communication failure or high latency in communication paths. The lack of scalable and fault tolerant global communication and synchronisation methods in large-scale systems has hindered the adoption of the K-Means algorithm for applications in large networked systems such as wireless sensor networks, peer-to-peer systems and mobile ad hoc networks. This work proposes a fully distributed K-Means algorithm (EpidemicK-Means) which does not require global communication and is intrinsically fault tolerant. The proposed distributed K-Means algorithm provides a clustering solution which can approximate the solution of an ideal centralised algorithm over the aggregated data as closely as desired. A comparative performance analysis is carried out against the state of the art sampling methods and shows that the proposed method overcomes the limitations of the sampling-based approaches for skewed clusters distributions. The experimental analysis confirms that the proposed algorithm is very accurate and fault tolerant under unreliable network conditions (message loss and node failures) and is suitable for asynchronous networks of very large and extreme scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Global communicationrequirements andloadimbalanceof someparalleldataminingalgorithms arethe major obstacles to exploitthe computational power of large-scale systems. This work investigates how non-uniform data distributions can be exploited to remove the global communication requirement and to reduce the communication costin parallel data mining algorithms and, in particular, in the k-means algorithm for cluster analysis. In the straightforward parallel formulation of the k-means algorithm, data and computation loads are uniformly distributed over the processing nodes. This approach has excellent load balancing characteristics that may suggest it could scale up to large and extreme-scale parallel computing systems. However, at each iteration step the algorithm requires a global reduction operationwhichhinders thescalabilityoftheapproach.Thisworkstudiesadifferentparallelformulation of the algorithm where the requirement of global communication is removed, while maintaining the same deterministic nature ofthe centralised algorithm. The proposed approach exploits a non-uniform data distribution which can be either found in real-world distributed applications or can be induced by means ofmulti-dimensional binary searchtrees. The approachcanalso be extended to accommodate an approximation error which allows a further reduction ofthe communication costs. The effectiveness of the exact and approximate methods has been tested in a parallel computing system with 64 processors and in simulations with 1024 processing element

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Boreal winter wind storm situations over Central Europe are investigated by means of an objective cluster analysis. Surface data from the NCEP-Reanalysis and ECHAM4/OPYC3-climate change GHG simulation (IS92a) are considered. To achieve an optimum separation of clusters of extreme storm conditions, 55 clusters of weather patterns are differentiated. To reduce the computational effort, a PCA is initially performed, leading to a data reduction of about 98 %. The clustering itself was computed on 3-day periods constructed with the first six PCs using "k-means" clustering algorithm. The applied method enables an evaluation of the time evolution of the synoptic developments. The climate change signal is constructed by a projection of the GCM simulation on the EOFs attained from the NCEP-Reanalysis. Consequently, the same clusters are obtained and frequency distributions can be compared. For Central Europe, four primary storm clusters are identified. These clusters feature almost 72 % of the historical extreme storms events and add only to 5 % of the total relative frequency. Moreover, they show a statistically significant signature in the associated wind fields over Europe. An increased frequency of Central European storm clusters is detected with enhanced GHG conditions, associated with an enhancement of the pressure gradient over Central Europe. Consequently, more intense wind events over Central Europe are expected. The presented algorithm will be highly valuable for the analysis of huge data amounts as is required for e.g. multi-model ensemble analysis, particularly because of the enormous data reduction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to determine whether geographical differences impact the composition of bacterial communities present in the airways of cystic fibrosis (CF) patients attending CF centers in the United States or United Kingdom. Thirty-eight patients were matched on the basis of clinical parameters into 19 pairs comprised of one U.S. and one United Kingdom patient. Analysis was performed to determine what, if any, bacterial correlates could be identified. Two culture-independent strategies were used: terminal restriction fragment length polymorphism (T-RFLP) profiling and 16S rRNA clone sequencing. Overall, 73 different terminal restriction fragment lengths were detected, ranging from 2 to 10 for U.S. and 2 to 15 for United Kingdom patients. The statistical analysis of T-RFLP data indicated that patient pairing was successful and revealed substantial transatlantic similarities in the bacterial communities. A small number of bands was present in the vast majority of patients in both locations, indicating that these are species common to the CF lung. Clone sequence analysis also revealed that a number of species not traditionally associated with the CF lung were present in both sample groups. The species number per sample was similar, but differences in species presence were observed between sample groups. Cluster analysis revealed geographical differences in bacterial presence and relative species abundance. Overall, the U.S. samples showed tighter clustering with each other compared to that of United Kingdom samples, which may reflect the lower diversity detected in the U.S. sample group. The impact of cross-infection and biogeography is considered, and the implications for treating CF lung infections also are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clustering methods are increasingly being applied to residential smart meter data, providing a number of important opportunities for distribution network operators (DNOs) to manage and plan the low voltage networks. Clustering has a number of potential advantages for DNOs including, identifying suitable candidates for demand response and improving energy profile modelling. However, due to the high stochasticity and irregularity of household level demand, detailed analytics are required to define appropriate attributes to cluster. In this paper we present in-depth analysis of customer smart meter data to better understand peak demand and major sources of variability in their behaviour. We find four key time periods in which the data should be analysed and use this to form relevant attributes for our clustering. We present a finite mixture model based clustering where we discover 10 distinct behaviour groups describing customers based on their demand and their variability. Finally, using an existing bootstrapping technique we show that the clustering is reliable. To the authors knowledge this is the first time in the power systems literature that the sample robustness of the clustering has been tested.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A large amount of biological data has been produced in the last years. Important knowledge can be extracted from these data by the use of data analysis techniques. Clustering plays an important role in data analysis, by organizing similar objects from a dataset into meaningful groups. Several clustering algorithms have been proposed in the literature. However, each algorithm has its bias, being more adequate for particular datasets. This paper presents a mathematical formulation to support the creation of consistent clusters for biological data. Moreover. it shows a clustering algorithm to solve this formulation that uses GRASP (Greedy Randomized Adaptive Search Procedure). We compared the proposed algorithm with three known other algorithms. The proposed algorithm presented the best clustering results confirmed statistically. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we present an algorithm for cluster analysis that integrates aspects from cluster ensemble and multi-objective clustering. The algorithm is based on a Pareto-based multi-objective genetic algorithm, with a special crossover operator, which uses clustering validation measures as objective functions. The algorithm proposed can deal with data sets presenting different types of clusters, without the need of expertise in cluster analysis. its result is a concise set of partitions representing alternative trade-offs among the objective functions. We compare the results obtained with our algorithm, in the context of gene expression data sets, to those achieved with multi-objective Clustering with automatic K-determination (MOCK). the algorithm most closely related to ours. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The taxonomy of the N(2)-fixing bacteria belonging to the genus Bradyrhizobium is still poorly refined, mainly due to conflicting results obtained by the analysis of the phenotypic and genotypic properties. This paper presents an application of a method aiming at the identification of possible new clusters within a Brazilian collection of 119 Bradryrhizobium strains showing phenotypic characteristics of B. japonicum and B. elkanii. The stability was studied as a function of the number of restriction enzymes used in the RFLP-PCR analysis of three ribosomal regions with three restriction enzymes per region. The method proposed here uses Clustering algorithms with distances calculated by average-linkage clustering. Introducing perturbations using sub-sampling techniques makes the stability analysis. The method showed efficacy in the grouping of the species B. japonicum and B. elkanii. Furthermore, two new clusters were clearly defined, indicating possible new species, and sub-clusters within each detected cluster. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse changes in a structure. One of the critical challenges for practical implementation of SHM system is the ability to detect damage under changing environmental conditions. This paper aims to characterize the temperature, load and damage effects in the sensor measurements obtained with piezoelectric transducer (PZT) patches. Data sets are collected on thin aluminum specimens under different environmental conditions and artificially induced damage states. The fuzzy clustering algorithm is used to organize the sensor measurements into a set of clusters, which can attribute the variation in sensor data due to temperature, load or any induced damage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O avanço nas áreas de comunicação sem fio e microeletrônica permite o desenvolvimento de equipamentos micro sensores com capacidade de monitorar grandes regiões. Formadas por milhares de nós sensores, trabalhando de forma colaborativa, as Redes de Sensores sem Fio apresentam severas restrições de energia, devido à capacidade limitada das baterias dos nós que compõem a rede. O consumo de energia pode ser minimizado, permitindo que apenas alguns nós especiais, chamados de Cluster Head, sejam responsáveis por receber os dados dos nós que formam seu cluster e propagar estes dados para um ponto de coleta denominado Estação Base. A escolha do Cluster Head ideal influencia no aumento do período de estabilidade da rede, maximizando seu tempo de vida útil. A proposta, apresentada nesta dissertação, utiliza Lógica Fuzzy e algoritmo k-means com base em informações centralizadas na Estação Base para eleição do Cluster Head ideal em Redes de Sensores sem Fio heterogêneas. Os critérios usados para seleção do Cluster Head são baseados na centralidade do nó, nível de energia e proximidade para a Estação Base. Esta dissertação apresenta as desvantagens de utilização de informações locais para eleição do líder do cluster e a importância do tratamento discriminatório sobre as discrepâncias energéticas dos nós que formam a rede. Esta proposta é comparada com os algoritmos Low Energy Adaptative Clustering Hierarchy (LEACH) e Distributed energy-efficient clustering algorithm for heterogeneous Wireless sensor networks (DEEC). Esta comparação é feita, utilizando o final do período de estabilidade, como também, o tempo de vida útil da rede.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper considers a model-based approach to the clustering of tissue samples of a very large number of genes from microarray experiments. It is a nonstandard problem in parametric cluster analysis because the dimension of the feature space (the number of genes) is typically much greater than the number of tissues. Frequently in practice, there are also clinical data available on those cases on which the tissue samples have been obtained. Here we investigate how to use the clinical data in conjunction with the microarray gene expression data to cluster the tissue samples. We propose two mixture model-based approaches in which the number of components in the mixture model corresponds to the number of clusters to be imposed on the tissue samples. One approach specifies the components of the mixture model to be the conditional distributions of the microarray data given the clinical data with the mixing proportions also conditioned on the latter data. Another takes the components of the mixture model to represent the joint distributions of the clinical and microarray data. The approaches are demonstrated on some breast cancer data, as studied recently in van't Veer et al. (2002).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the application of a new technique, rough clustering, to the problem of market segmentation. Rough clustering produces different solutions to k-means analysis because of the possibility of multiple cluster membership of objects. Traditional clustering methods generate extensional descriptions of groups, that show which objects are members of each cluster. Clustering techniques based on rough sets theory generate intensional descriptions, which outline the main characteristics of each cluster. In this study, a rough cluster analysis was conducted on a sample of 437 responses from a larger study of the relationship between shopping orientation (the general predisposition of consumers toward the act of shopping) and intention to purchase products via the Internet. The cluster analysis was based on five measures of shopping orientation: enjoyment, personalization, convenience, loyalty, and price. The rough clusters obtained provide interpretations of different shopping orientations present in the data without the restriction of attempting to fit each object into only one segment. Such descriptions can be an aid to marketers attempting to identify potential segments of consumers.