932 resultados para DIFFERENCE TIME-DOMAIN
Resumo:
Subwavelength resonators at FIR are presented and studied. The structures consist of 1D cavities formed between a metallized (silver) surface and a metamaterial surface comprising a periodic array of silver patches on a silver-backed silicon substrate. The concept derives from recent discoveries of artificial magnetic conductors (AMC). By studying the currents excited on the metamaterial surface by a normally incident plane wave, the nature of the emerging resonant phenomena and the physical mechanism underlying the AMC operation are investigated. Full wave simulations, based on finite element method and time-domain transmission line modelling technique, have been carried out to demonstrate the effective AMC boundary condition and prove the possibilities for subwavelength cavities. The quality factor of the resonant cavities is assessed as a function of the cavity profile. It is demonstrated that the quality factor drops to about 1/8 of the half-wavelength value for lambda/8 resonant cavity.
Resumo:
A techno-economic model of an autonomous wave-powered desalination plant is developed and indicates that fresh water can be produced for as little as £0.45/m3. The advantages of an autonomous wave-powered desalination plant are also discussed indicating that the real value of the system is enhanced due to its flexibility for deployment and reduced environmental impact. The modelled plant consists of the Oyster wave energy converter, conventional reverse osmosis membranes and a pressure exchanger–intensifier for energy recovery. A time-domain model of the plant is produced using wave-tank experimentation to calibrate the model of Oyster, manufacturer's data for the model of the reverse osmosis membranes and a hydraulic model of the pressure exchanger–intensifier. The economic model of the plant uses best-estimate cost data which are reduced to annualised costs to facilitate the calculation of the cost of water. Finally, the barriers to the deployment of this technology are discussed, but they are not considered insurmountable.
Resumo:
In this letter, the performance bound of the IEEE 802.16d channel is examined analytically in order to gain an insight into its theoretical potential. Different design strategies, such as orthogonal frequency division multiplexing (OFDM) and single-carrier frequency-domain equalization (SC-FDE), time-domain decision feedback equalization (DFE), and sphere decoder (SD) techniques are discussed and compared to the theoretical bound.
Resumo:
A time-domain formulation of a lumped model ap-
proximation of a clarinet reed excitation mechanism is presented.
The lumped model is based on an analytical representation of
the ow within the reed channel, incorporating a contraction
coefcient (vena contracta factor) that is dened as the ratio of
the effective ow over the Bernoulli ow. This coefcient has
been considered to be constant in previous studies focusing on
sound synthesis. In this paper it will be treated as a function
of the reed opening, varying between 0 and 1 as predicted by
boundary layer ow theory. Focussing on a specic mouthpiece
geometry, the effect of modelling a variable air jet height on the
synthesised sound is analysed.
Resumo:
We present the early UV and optical light curve of Type IIP supernova (SN) 2010aq at z = 0.0862, and compare it to analytical models for thermal emission following SN shock breakout in a red supergiant star. SN 2010aq was discovered in joint monitoring between the Galaxy Evolution Explorer (GALEX) Time Domain Survey (TDS) in the NUV and the Pan-STARRS1 Medium Deep Survey (PS1 MDS) in the g, r, i, and z bands. The GALEX and Pan-STARRS1 observations detect the SN less than 1 day after the shock breakout, measure a diluted blackbody temperature of 31,000 +/- 6000 K 1 day later, and follow the rise in the UV/optical light curve over the next 2 days caused by the expansion and cooling of the SN ejecta. The high signal-to-noise ratio of the simultaneous UV and optical photometry allows us to fit for a progenitor star radius of 700 +/- 200R(circle dot), the size of a red supergiant star. An excess in UV emission two weeks after shock breakout compared with SNe well fitted by model atmosphere-code synthetic spectra with solar metallicity is best explained by suppressed line blanketing due to a lower metallicity progenitor star in SN 2010aq. Continued monitoring of PS1 MDS fields by the GALEX TDS will increase the sample of early UV detections of Type II SNe by an order of magnitude and probe the diversity of SN progenitor star properties.
Resumo:
Orthogonal frequency division multiplexing (OFDM) requires an expensive linear amplifier at the transmitter due to its high peak-to-average power ratio (PAPR). Single carrier with cyclic prefix (SC-CP) is a closely related transmission scheme that possesses most of the benefits of OFDM but does not have the PAPR problem. Although in a multipath environment, SC-CP is very robust to frequency-selective fading, it is sensitive to the time-selective fading characteristics of the wireless channel that disturbs the orthogonality of the channel matrix (CM) and increases the computational complexity of the receiver. In this paper, we propose a time-domain low-complexity iterative algorithm to compensate for the effects of time selectivity of the channel that exploits the sparsity present in the channel convolution matrix. Simulation results show the superior performance of the proposed algorithm over the standard linear minimum mean-square error (L-MMSE) equalizer for SC-CP.
Resumo:
Accurate determination of shear wave arrival time using bender elements may be severely affected by a combination of near-field effects and reflected waves. These may mask the first arrival of the shear wave, making its detection difficult in the time domain. This paper describes an approach for measuring the shear wave arrival time through analysis of the output signal in the time-scale domain using a multi-scale wavelet transform. The local maxima lines of the wavelet transform modulus are observed at different scales, and all singularities are mathematically characterised, allowing subsequent detection of the singularity relating to the first arrival. Examples of the use of this approach on typical synthetic and experimental bender element signals are also supplied, and these results are compared with those from other time and frequency domain approaches. The wavelet approach is not affected by near-field effects, but instead is characterised by a relatively consistent singularity related to the shear wave arrival time, across a range of frequencies and noise levels.
Resumo:
This work proposes a novel approach to compute transonic Lim
it Cycle Oscillations using high fidelity analysis. CFD based Harmonic Balance methods have proven to be efficient tools to predict periodic phenomena. This paper’s contribution is to present a new methodology to determine the unknown frequency of oscillations, enabling HB methods to accurately capture Limit Cycle Oscillations (LCOs); this is achieved by defining a frequency updating procedure based on a coupled CFD/CSD Harmonic Balance formulation to find the LCO condition. A pitch/plunge aerofoil and delta wing aerodynamic and respective linear structural models are used to validate the new method against conventional time-domain simulations. Results show consistent agreement between the proposed and time-marching methods for both LCO amplitude and frequency, while producing at least one order of magnitude reduction in computational time.
Resumo:
Linear wave theory models are commonly applied to predict the performance of bottom-hinged oscillating wave surge converters (OWSC) in operational sea states. To account for non-linear effects, the additional input of coefficients not included in the model itself becomes necessary. In ocean engineering it is
common practice to obtain damping coefficients of floating structures from free decay tests. This paper presents results obtained from experimental tank tests and numerical computational fluid dynamics simulations of OWSC’s. Agreement between numerical and experimental methods is found to be very good, with CFD providing more data points at small amplitude rotations.
Analysis of the obtained data reveals that linear quadratic-damping, as commonly used in time domain models, is not able to accurately model the occurring damping over the whole regime of rotation amplitudes. The authors
conclude that a hyperbolic function is most suitable to express the instantaneous damping ratio over the rotation amplitude and would be the best choice to be used in coefficient based time domain models.
Resumo:
The purpose is to study the diagnostic performance of optical coherence tomography (OCT) and alternative diagnostic tests for neovascular age-related macular degeneration (nAMD). Methods employed are as follows:systematic review and meta-analysis; Index test: OCT including time-domain (TD-OCT) and the most recently developed spectral domain (SD-OCT); comparator tests: visual acuity, clinical evaluation (slit lamp), Amsler chart, colour fundus photographs, infra-red reflectance, red-free images/blue reflectance, fundus autofluorescence imaging (FAF), indocyanine green angiography (ICGA), preferential hyperacuity perimetry (PHP), and microperimetry; reference standard: fundus fluorescein angiography. Databases searched included MEDLINE, MEDLINE In Process, EMBASE, Biosis, SCI, the Cochrane Library, DARE, MEDION, and HTA database. Last literature searches: March 2013. Risk of bias assessed using QUADAS-2. Meta-analysis models were fitted using hierarchical summary receiver operating characteristic (HSROC) curves. Twenty-two studies (2 abstracts and 20 articles) enrolling 2124 participants were identified, reporting TD-OCT (12 studies), SD-OCT (1 study), ICGA (8 studies), PHP (3 studies), Amsler grid, colour fundus photography and FAF (1 study each). Most studies were considered to have a high risk of bias in the patient selection (55%, 11/20), and flow and timing (40%, 8/20) domains. In a meta-analysis of TD-OCT studies, sensitivity and specificity (95% CI) were 88% (46–98%) and 78% (64–88%), respectively. There was insufficient information to undertake meta-analysis for other tests. TD-OCT is a sensitive test for detecting nAMD, although specificity was only moderate. Data on SD-OCT are sparse. Diagnosis of nAMD should not rely solely on OCT.
Resumo:
The Harmonic Balance method is an attractive solution for computing periodic responses and can be an alternative to time domain methods, at a reduced computational cost. The current paper investigates using a Harmonic Balance method for simulating limit cycle oscillations under uncertainty. The Harmonic Balance method is used in conjunction with a non-intrusive polynomial-chaos approach to propagate variability and is validated against Monte Carlo analysis. Results show the potential of the approach for a range of nonlinear dynamical systems, including a full wing configuration exhibiting supercritical and subcritical bifurcations, at a fraction of the cost of performing time domain simulations.
Resumo:
In this paper the evolution of a time domain dynamic identification technique based on a statistical moment approach is presented. This technique can be used in the case of structures under base random excitations in the linear state and in the non linear one. By applying Itoˆ stochastic calculus, special algebraic equations can be obtained depending on the statistical moments of the response of the system to be identified. Such equations can be used for the dynamic identification of the mechanical parameters and of the input. The above equations, differently from many techniques in the literature, show the possibility of obtaining the identification of the dissipation characteristics independently from the input. Through the paper the first formulation of this technique, applicable to non linear systems, based on the use of a restricted class of the potential models, is presented. Further a second formulation of the technique in object, applicable to each kind of linear systems and based on the use of a class of linear models, characterized by a mass proportional damping matrix, is described.
Resumo:
Topic
To compare the accuracy of optical coherence tomography (OCT) with alternative tests for monitoring neovascular age-related macular degeneration (nAMD) and detecting disease activity among eyes previously treated for this condition.
Clinical RelevanceTraditionally, fundus fluorescein angiography (FFA) has been considered the reference standard to detect nAMD activity, but FFA is costly and invasive. Replacement of FFA by OCT can be justified if there is a substantial agreement between tests.
MethodsSystematic review and meta-analysis. The index test was OCT. The comparator tests were visual acuity, clinical evaluation (slit lamp), Amsler chart, color fundus photographs, infrared reflectance, red-free images and blue reflectance, fundus autofluorescence imaging, indocyanine green angiography (ICGA), preferential hyperacuity perimetry, and microperimetry. We searched the following databases: MEDLINE, MEDLINE In-Process, EMBASE, Biosis, Science Citation Index, the Cochrane Library, Database of Abstracts of Reviews of Effects, MEDION, and the Health Technology Assessment database. The last literature search was conducted in March 2013. We used the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) to assess risk of bias.
ResultsWe included 8 studies involving more than 400 participants. Seven reported the performance of OCT (3 time-domain [TD] OCT, 3 spectral-domain [SD] OCT, 1 both types) and 1 reported the performance of ICGA in the detection of nAMD activity. We did not find studies directly comparing tests in the same population. The pooled sensitivity and specificity of TD OCT and SD OCT for detecting active nAMD was 85% (95% confidence interval [CI], 72%–93%) and 48% (95% CI, 30%–67%), respectively. One study reported ICGA with sensitivity of 75.9% and specificity of 88.0% for the detection of active nAMD. Half of the studies were considered to have a high risk of bias.
ConclusionsThere is substantial disagreement between OCT and FFA findings in detecting active disease in patients with nAMD who are being monitored. Both methods may be needed to monitor patients comprehensively with nAMD.
Resumo:
BACKGROUND: Age-related macular degeneration is the most common cause of sight impairment in the UK. In neovascular age-related macular degeneration (nAMD), vision worsens rapidly (over weeks) due to abnormal blood vessels developing that leak fluid and blood at the macula.
OBJECTIVES: To determine the optimal role of optical coherence tomography (OCT) in diagnosing people newly presenting with suspected nAMD and monitoring those previously diagnosed with the disease.
DATA SOURCES: Databases searched: MEDLINE (1946 to March 2013), MEDLINE In-Process & Other Non-Indexed Citations (March 2013), EMBASE (1988 to March 2013), Biosciences Information Service (1995 to March 2013), Science Citation Index (1995 to March 2013), The Cochrane Library (Issue 2 2013), Database of Abstracts of Reviews of Effects (inception to March 2013), Medion (inception to March 2013), Health Technology Assessment database (inception to March 2013).
REVIEW METHODS: Types of studies: direct/indirect studies reporting diagnostic outcomes.
INDEX TEST: time domain optical coherence tomography (TD-OCT) or spectral domain optical coherence tomography (SD-OCT).
COMPARATORS: clinical evaluation, visual acuity, Amsler grid, colour fundus photographs, infrared reflectance, red-free images/blue reflectance, fundus autofluorescence imaging, indocyanine green angiography, preferential hyperacuity perimetry, microperimetry. Reference standard: fundus fluorescein angiography (FFA). Risk of bias was assessed using quality assessment of diagnostic accuracy studies, version 2. Meta-analysis models were fitted using hierarchical summary receiver operating characteristic curves. A Markov model was developed (65-year-old cohort, nAMD prevalence 70%), with nine strategies for diagnosis and/or monitoring, and cost-utility analysis conducted. NHS and Personal Social Services perspective was adopted. Costs (2011/12 prices) and quality-adjusted life-years (QALYs) were discounted (3.5%). Deterministic and probabilistic sensitivity analyses were performed.
RESULTS: In pooled estimates of diagnostic studies (all TD-OCT), sensitivity and specificity [95% confidence interval (CI)] was 88% (46% to 98%) and 78% (64% to 88%) respectively. For monitoring, the pooled sensitivity and specificity (95% CI) was 85% (72% to 93%) and 48% (30% to 67%) respectively. The FFA for diagnosis and nurse-technician-led monitoring strategy had the lowest cost (£39,769; QALYs 10.473) and dominated all others except FFA for diagnosis and ophthalmologist-led monitoring (£44,649; QALYs 10.575; incremental cost-effectiveness ratio £47,768). The least costly strategy had a 46.4% probability of being cost-effective at £30,000 willingness-to-pay threshold.
LIMITATIONS: Very few studies provided sufficient information for inclusion in meta-analyses. Only a few studies reported other tests; for some tests no studies were identified. The modelling was hampered by a lack of data on the diagnostic accuracy of strategies involving several tests.
CONCLUSIONS: Based on a small body of evidence of variable quality, OCT had high sensitivity and moderate specificity for diagnosis, and relatively high sensitivity but low specificity for monitoring. Strategies involving OCT alone for diagnosis and/or monitoring were unlikely to be cost-effective. Further research is required on (i) the performance of SD-OCT compared with FFA, especially for monitoring but also for diagnosis; (ii) the performance of strategies involving combinations/sequences of tests, for diagnosis and monitoring; (iii) the likelihood of active and inactive nAMD becoming inactive or active respectively; and (iv) assessment of treatment-associated utility weights (e.g. decrements), through a preference-based study.
STUDY REGISTRATION: This study is registered as PROSPERO CRD42012001930.
FUNDING: The National Institute for Health Research Health Technology Assessment programme.
Resumo:
Purpose:To determine the optimal role of OCT in diagnosing and monitoring nAMD (detecting disease activity and the need for further anti-VEGF treatment).
Methods:Systematic review. Major electronic databases and websites were searched. Studies were included if they reported the diagnostic performance of time domain or spectral domain OCT (or selected other tests) against a reference standard of ophthalmologist-interpreted fluorescein angiography in people with newly suspected or previously diagnosed nAMD. Risk of bias was assessed by two independent investigators using QUADAS-2. Summary receiver operating characteristic (SROC) curves were produced for each test given sufficient data.
Results:3700 titles/abstracts were screened, and 120 (3.2%) were selected for full-text assessment. A total of 22 studies were included (17 on diagnosis, 7 monitoring, and 3 both). From 15 studies reporting OCT data, sensitivity and specificity ranged from 59% to 100% and 27% to 100%, respectively.
Conclusions:The reported diagnostic performance of OCT showed large variability. The methodological quality of most studies was sub-optimal.