998 resultados para Critical Sobolev Exponent
Resumo:
An exciting application of crowdsourcing is to use social networks in complex task execution. In this paper, we address the problem of a planner who needs to incentivize agents within a network in order to seek their help in executing an atomic task as well as in recruiting other agents to execute the task. We study this mechanism design problem under two natural resource optimization settings: (1) cost critical tasks, where the planner's goal is to minimize the total cost, and (2) time critical tasks, where the goal is to minimize the total time elapsed before the task is executed. We identify a set of desirable properties that should ideally be satisfied by a crowdsourcing mechanism. In particular, sybil-proofness and collapse-proofness are two complementary properties in our desiderata. We prove that no mechanism can satisfy all the desirable properties simultaneously. This leads us naturally to explore approximate versions of the critical properties. We focus our attention on approximate sybil-proofness and our exploration leads to a parametrized family of payment mechanisms which satisfy collapse-proofness. We characterize the approximate versions of the desirable properties in cost critical and time critical domain.
Resumo:
In recent times, crowdsourcing over social networks has emerged as an active tool for complex task execution. In this paper, we address the problem faced by a planner to incen-tivize agents in the network to execute a task and also help in recruiting other agents for this purpose. We study this mecha-nism design problem under two natural resource optimization settings: (1) cost critical tasks, where the planner’s goal is to minimize the total cost, and (2) time critical tasks, where the goal is to minimize the total time elapsed before the task is executed. We define a set of fairness properties that should beideally satisfied by a crowdsourcing mechanism. We prove that no mechanism can satisfy all these properties simultane-ously. We relax some of these properties and define their ap-proximate counterparts. Under appropriate approximate fair-ness criteria, we obtain a non-trivial family of payment mech-anisms. Moreover, we provide precise characterizations of cost critical and time critical mechanisms.
Resumo:
The aim of this paper is to obtain certain characterizations for the image of a Sobolev space on the Heisenberg group under the heat kernel transform. We give three types of characterizations for the image of a Sobolev space of positive order H-m (H-n), m is an element of N-n, under the heat kernel transform on H-n, using direct sum and direct integral of Bergmann spaces and certain unitary representations of H-n which can be realized on the Hilbert space of Hilbert-Schmidt operators on L-2 (R-n). We also show that the image of Sobolev space of negative order H-s (H-n), s(> 0) is an element of R is a direct sum of two weighted Bergman spaces. Finally, we try to obtain some pointwise estimates for the functions in the image of Schwartz class on H-n under the heat kernel transform. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
CRITICAL ROLE OF IGFBP ISOFORMS AND THEIR DOWNSTREAM SIGNALING PATHWAYS IN GLIOBLASTOMA PATHOGENESIS
Resumo:
Among the armoury of photovoltaic materials, thin film heterojunction photovoltaics continue to be a promising candidate for solar energy conversion delivering a vast scope in terms of device design and fabrication. Their production does not require expensive semiconductor substrates and high temperature device processing, which allows reduced cost per unit area while maintaining reasonable efficiency. In this regard, superstrate CdTe/CdS solar cells are extensively investigated because of their suitable bandgap alignments, cost effective methods of production at large scales and stability against proton/electron irradiation. The conversion efficiencies in the range of 6-20% are achieved by structuring the device by varying the absorber/window layer thickness, junction activation/annealing steps, with more suitable front/back contacts, preparation techniques, doping with foreign ions, etc. This review focuses on fundamental and critical aspects like: (a) choice of CdS window layer and CdTe absorber layer; (b) drawbacks associated with the device including environmental problems, optical absorption losses and back contact barriers; (c) structural dynamics at CdS-CdTe interface; (d) influence of junction activation process by CdCl2 or HCF2Cl treatment; (e) interface and grain boundary passivation effects; (f) device degradation due to impurity diffusion and stress; (g) fabrication with suitable front and back contacts; (h) chemical processes occurring at various interfaces; (i) strategies and modifications developed to improve their efficiency. The complexity involved in understanding the multiple aspects of tuning the solar cell efficiency is reviewed in detail by considering the individual contribution from each component of the device. It is expected that this review article will enrich the materials aspects of CdTe/CdS devices for solar energy conversion and stimulate further innovative research interest on this intriguing topic.
Resumo:
The localization and dispersion quality of as received NH2 terminated multiwall carbon nanotubes (MWNT-I) and ethylene diamine (EDA) functionalized MWNTs in melt mixed blends of polycarbonate ( PC) and poly(styrene-co-acrylonitrile) (SAN) were assessed in this study using rheo-electrical and electromagnetic interference (EMI) shielding measurements. In order to improve the dispersion quality and also to selectively localize MWNTs in the PC phase of the blends, EDA was grafted onto MWNTs by two different strategies like diazonium reaction of the para-substituted benzene ring of MWNTs with EDA ( referred to as MWNT-II) and acylation of carboxyl functionalized MWNTs with thionyl chloride ( referred to as MWNT-III). By this approach we could systematically vary the concentration of NH2 functional groups on the surface of MWNTs at a fixed concentration (1 wt%) in PC/SAN blends. XPS was carried to evaluate the % concentration of N in different MWNTs and was observed to be highest for MWNT-III manifesting in a large surface coverage of EDA on the surface of MWNTs. Viscoelastic properties and melt electrical conductivities were measured to assess the dispersion quality of MWNTs using a rheo-electrical set-up both in the quiescent as well as under steady shear conditions. Rheological properties revealed chain scission of PC in the presence of MWNT-III which is due to specific interactions between EDA and PC leading to smaller PC grafts on the surface of MWNTs. The observed viscoelastic properties in the blends were further correlated with the phase morphologies under quiescent and annealed conditions. Electromagnetic interference (EMI) shielding effectiveness in X and K-u-band frequencies were measured to explore these composites for EMI shielding applications. Interestingly, MWNT-II showed the highest electrical conductivity and EMI shielding in the blends.
Resumo:
Impaired Akt1 signaling is observed in neurodegenerative diseases, including Parkinson's disease (PD). In PD models oxidative modification of Akt1 leads to its dephosphorylation and consequent loss of its kinase activity. To explore the underlying mechanism we exposed Neuro2A cells to cadmium, a pan inhibitor of protein thiol disulfide oxidoreductases, including glutaredoxin 1 (Grx1), or downregulated Grx1, which led to dephosphorylation of Akt1, loss of its kinase activity, and also decreased Akt1 protein levels. Mutation of cysteines to serines at 296 and 310 in Akt1 did not affect its basal kinase activity but abolished cadmium- and Grx1 downregulation-induced reduction in Akt1 kinase activity, indicating their critical role in redox modulation of Akt1 function and turnover. Cadmium-induced decrease in phosphorylated Akt1 correlated with increased association of wild-type (WT) Akt1 with PP2A, which was absent in the C296-310S Akt1 mutant and was also abolished by N-acetylcysteine treatment. Further, increased proteasomal degradation of Akt1 by cadmium was not seen in the C296-310S Akt1 mutant, indicating that oxidation of cysteine residues facilitates degradation of WT Akt1. Moreover, preventing oxidative modification of Akt1 cysteines 296 and 310 by mutating them to serines increased the cell survival effects of Akt1. Thus, in neurodegenerative states such as PD, maintaining the thiol status of cysteines 296 and 310 in Akt1 would be critical for Akt1 kinase activity and for preventing its degradation by proteasomes. Preventing downregulation of Akt signaling not only has long-range consequences for cell survival but could also affect the multiple roles that Ala plays, including in the Akt-mTOR signaling cascade. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
We consider the Riemannian functional defined on the space of Riemannian metrics with unit volume on a closed smooth manifold M given by R-n/2(g) := integral(M) vertical bar R(g)vertical bar(n//2) dv(g) where R(g), dv(g) denote the Riemannian curvature and volume form corresponding to g. We show that there are locally symmetric spaces which are unstable critical points for this functional.
Resumo:
The paradox of strength and ductility is now well established and denotes the difficulty of simultaneously achieving both high strength and high ductility. This paradox was critically examined using a cast Al-7% Si alloy processed by high-pressure torsion (HPT) for up to 10 turns at a temperature of either 298 or 445 K. This processing reduces the grain size to a minimum of similar to 0.4 mu m and also decreases the average size of the Si particles. The results show that samples processed to high numbers of HPT turns exhibit both high strength and high ductility when tested at relatively low strain rates and the strain rate sensitivity under these conditions is similar to 0.14 which suggests that flow occurs by some limited grain boundary sliding and crystallographic slip. The results are also displayed on the traditional diagram for strength and ductility and they demonstrate the potential for achieving high strength and high ductility by increasing the number of turns in HPT.
Resumo:
We consider an exclusion process on a ring in which a particle hops to an empty neighboring site with a rate that depends on the number of vacancies n in front of it. In the steady state, using the well-known mapping of this model to the zero-range process, we write down an exact formula for the partition function and the particle-particle correlation function in the canonical ensemble. In the thermodynamic limit, we find a simple analytical expression for the generating function of the correlation function. This result is applied to the hop rate u(n) = 1 + (b/n) for which a phase transition between high-density laminar phase and low-density jammed phase occurs for b > 2. For these rates, we find that at the critical density, the correlation function decays algebraically with a continuously varying exponent b - 2. We also calculate the two-point correlation function above the critical density and find that the correlation length diverges with a critical exponent nu = 1/(b - 2) for b < 3 and 1 for b > 3. These results are compared with those obtained using an exact series expansion for finite systems.
Resumo:
The effect of strain path change during rolling on the evolution of deformation texture has been studied for nanocrystalline (nc) nickel. An orthogonal change in strain path, as imparted by alternating rolling and transverse directions, leads to a texture with a strong Bs {110}aOE (c) 112 > component. The microstructural features, after large deformation, show distinct grain morphology for the cross-rolled material. Crystal plasticity simulations, based on viscoplastic self-consistent model, indicate that slip involving partial dislocation plays a vital role in accommodating plastic deformation during the initial stages of rolling. The brass-type texture evolved after cross rolling to large strains is attributed to change in strain path.
Resumo:
The explanation of resonance given in IEEE Std C57.149-2012 to define resonance during frequency response analysis (FRA) measurements on transformers implicitly uses the conditions prevalent during resonance in a series R-L-C circuit. This dependence is evident from the two assertions made in the definition, viz., resulting in zero net reactive impedance, and, accompanied by a zero value appearing in the phase angle of the frequency response function. These two conditions are satisfied (at resonance) only in a series R-L-C circuit and certainly not in a transformer, as has been assumed in the Standard. This can be proved by considering a ladder-network model. Circuit analysis of this ladder network reveals the origin of this fallacy and proves that, at resonance, neither is the ladder network purely resistive and nor is the phase angle (between input voltage and input current) always zero. Also, during FRA measurements, it is often seen that phase angle does not traverse the conventional cyclic path from +90 degrees to -90 degrees (or vice versa) at all resonant frequencies. This peculiar feature can also be explained using pole-zero maps. Simple derivations, simulations and experimental results on an actual winding are presented. In summary, authors believe that this study dispels existing misconceptions about definition of FRA resonance and provides material for its correction in IEEE Std C57.149-2012. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Several operational aspects for thermal power plants in general are non-intuitive and involve simultaneous optimization of a number of operational parameters. In the case of solar operated power plants, it is even more difficult due to varying heat source temperatures induced by variability in insolation levels. This paper introduces a quantitative methodology for load regulation of a CO2 based Brayton cycle power plant using the `thermal efficiency and specific work output' coordinate system. The analysis shows that a transcritical CO2 cycle offers more flexibility under part load performance than the supercritical cycle in case of non-solar power plants. However, for concentrated solar power, where efficiency is important, supercritical CO2 cycle fares better than transcritical CO2 cycle. A number of empirical equations relating heat source temperature, high side pressure with efficiency and specific work output are proposed which could assist in generating control algorithms. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Glyoxalase I which is synonymously known as lactoylglutathione lyase is a critical enzyme in methylglyoxal (MG) detoxification. We assessed the STM3117 encoded lactoylglutathione lyase (Lgl) of Salmonella Typhimurium, which is known to function as a virulence factor, due in part to its ability to detoxify methylglyoxal. We found that STM3117 encoded Lgl isomerises the hemithioacetal adduct of MG and glutathione (GSH) into S-lactoylglutathione. Lgl was observed to be an outer membrane bound protein with maximum expression at the exponential growth phase. The deletion mutant of S. Typhimurium (lgl) exhibited a notable growth inhibition coupled with oxidative DNA damage and membrane disruptions, in accordance with the growth arrest phenomenon associated with typical glyoxalase I deletion. However, growth in glucose minimal medium did not result in any inhibition. Endogenous expression of recombinant Lgl in serovar Typhi led to an increased resistance and growth in presence of external MG. Being a metalloprotein, Lgl was found to get activated maximally by Co2+ ion followed by Ni2+, while Zn2+ did not activate the enzyme and this could be attributed to the geometry of the particular protein-metal complex attained in the catalytically active state. Our results offer an insight on the pivotal role of the virulence associated and horizontally acquired STM3117 gene in non-typhoidal serovars with direct correlation of its activity in lending survival advantage to Salmonella spp.