996 resultados para Construction Vehicles.
Resumo:
An investigation of the construction data management needs of the Florida Department of Transportation (FDOT) with regard to XML standards including development of data dictionary and data mapping. The review of existing XML schemas indicated the need for development of specific XML schemas. XML schemas were developed for all FDOT construction data management processes. Additionally, data entry, approval and data retrieval applications were developed for payroll compliance reporting and pile quantity payment development.
Resumo:
Building Information Modelling (BIM) has been regarded as a one stop shop capable of addressing the ills of the construction industry. Yet, while some firms have accepted BIM as a new way to work and gone on to record success, others (which have not so done) have raised such questions as: ‘How is BIM defined? Is it a tool or a process? Which kinds and sizes of organisations stand to benefit from BIM?’ These questions form the basis of this research. Hence, having explored the relevant body of literature, this research investigates three organisations within the UK – described as the earliest adopters of BIM – and considers how they have fared in terms of project performance in the years since adopting BIM; focusing on project cost, delivery time and quality achievement. This investigation also probed two of the leading voices in BIM in the UK in search of the much needed answers. The findings of the research show that successful projects executed in the organisations that have used BIM is predicated on its adoption as a process, rather than as a tool of technology; a process that changes the way work in the construction industry is typically done. Moreover, the successes recorded in the firms researched give credence to project success consequent upon adopting BIM. Nevertheless, the findings of this research show that the cornerstone of this success is leadership-driven innovation.
Resumo:
This paper presents a novel three-phase to single-phase matrix converter (TSMC) based bi-directional inductive power transfer (IPT) system for vehicle-to-grid (V2G) applications. In contrast to existing techniques, the proposed technique which employs a TSMC to drive an 8th order high frequency resonant network, requires only a single-stage power conversion process to facilitate bi-directional power transfer between electric vehicles (EVs) and a three-phase utility power supply. A mathematical model is presented to demonstrate that both magnitude and direction of power flow can be controlled by regulating either relative phase angles or magnitudes of voltages generated by converters. The viability of the proposed mathematical model is verified using simulated results of a 10 kW bi-directional IPT system and the results suggest that the proposed system is efficient, reliable and is suitable for high power applications which require contactless power transfer.
Resumo:
In this paper a novel controller for stable and precise operation of multi-rotors with heavy slung loads is introduced. First, simplified equations of motions for the multi-rotor and slung load are derived. The model is then used to design a Nonlinear Model Predictive Controller (NMPC) that can manage the highly nonlinear dynamics whilst accounting for system constraints. The controller is shown to simultaneously track specified waypoints whilst actively damping large slung load oscillations. A Linear-quadratic regulator (LQR) controller is also derived, and control performance is compared in simulation. Results show the improved performance of the Nonlinear Model Predictive Control (NMPC) controller over a larger flight envelope, including aggressive maneuvers and large slung load displacements. Computational cost remains relatively small, amenable to practical implementation. Such systems for small Unmanned Aerial Vehicles (UAVs) may provide significant benefit to several applications in agriculture, law enforcement and construction.
Resumo:
This thesis examined the delay causes of Malaysian public sector projects. Using a systematic approach, the researcher identified the main delay factors and categorised them into pathogens. The pathogens were matched with beneficial Supply Chain Management (SCM) tools and developed into a holistic SCM framework to facilitate improvements in Malaysian public sector projects. The researcher concluded that SCM is the potential saviour for the delay dilemma and that it is necessary for the Malaysian government to initiate the revolutionary practice.
Resumo:
A novel replaceable, modularized energy storage system with wireless interface is proposed for a battery operated electric vehicle (EV). The operation of the proposed system is explained and analyzed with an equivalent circuit and an averaged state-space model. A non-linear feedback linearization based controller is developed and implemented to regulate the DC link voltage by modulating the phase shift ratio. The working and control of the proposed system is verified through simulation and some preliminary results are presented.
Resumo:
Bidirectional Inductive Power Transfer (IPT) systems are preferred for Vehicle-to-Grid (V2G) applications. Typically, bidirectional IPT systems consist of high order resonant networks, and therefore, the control of bidirectional IPT systems has always been a difficulty. To date several different controllers have been reported, but these have been designed using steady-state models, which invariably, are incapable of providing an accurate insight into the dynamic behaviour of the system A dynamic state-space model of a bidirectional IPT system has been reported. However, currently this model has not been used to optimise the design of controllers. Therefore, this paper proposes an optimised controller based on the dynamic model. To verify the operation of the proposed controller simulated results of the optimised controller and simulated results of another controller are compared. Results indicate that the proposed controller is capable of accurately and stably controlling the power flow in a bidirectional IPT system.
Resumo:
Large scale solar plants are gaining recognition as potential energy sources for future. In this paper, the feasibility of using electric vehicles (EVs) to control a solar powered micro-grid is investigated in detail. The paper presents a PSCAD/EMTDC based model for the solar powered micro-grid with EVs. EVs are expected to have both the vehicle-to-grid (V2G) and grid-to-vehicle (G2V) capability, through which energy can either be injected into or extracted from the solar powered micro-grid to control its energy imbalance. Using the model, the behaviour of the micro-grid is investigated under a given load profile, and the results indicate that a minimum number of EVs are required to meet the energy imbalance and it is time dependent and influenced by various factors such as depth of charge, commuting profiles, reliability etc...
Resumo:
Conceptually, the management of safety at roadworks can be seen in a three level framework. At the regulatory level, roadworks operate at the interface between the work environment, governed by workplace health and safety regulations, and the road environment, which is subject to road traffic regulations and practices. At the organizational level, national, state and local governments plan and purchase road construction and maintenance which are then delivered in-house or tendered out to large construction companies who often subcontract multiple smaller companies to supply services and labor. At the operational level, roadworks are difficult to isolate from the general public, hindering effective occupational health and safety controls. This study, from the State of Queensland, Australia, examines how well this tripartite framework functions. It includes reviews of organizational policy and procedures documents; interviews with 24 subject matter experts from various road construction and maintenance organizations, and on-site interviews with 66 road construction personnel. The study identified several factors influencing the translation of safety policies into practice including the cost of safety measures in the context of competitive tendering, lack of firm evidence of the effectiveness of safety measures, and pressures to minimize disruption to the travelling public.
Resumo:
Battery/supercapacitor hybrid energy storage systems have been gaining popularity in electric vehicles due to their excellent power and energy performances. Conventional designs of such systems require interfacing dc-dc converters. These additional dc-dc converters increase power loss, complexity, weight and cost. Therefore, this paper proposes a new direct integration scheme for battery/supercapacitor hybrid energy storage systems using a double ended inverter system. This unique approach eliminates the need for interfacing converters and thus it is free from aforementioned drawbacks. Furthermore, the proposed system offers seven operating modes to improve the effective use of available energy in a typical drive cycle of a hybrid electric vehicle. Simulation results are presented to verify the efficacy of the proposed system and control techniques.
Resumo:
This book analyses the principles underlying the construction and application of a number of boilerplate and other clauses commonly included in commercial contracts. The first Part of the work deals with general principles of interpretation. It then considers clauses which allocate commercial risk; clauses relating to performance; clauses introducing new parties by way of assignment, novation or nomination; clauses such as guarantees and indemnities which create liabilities in third parties; and dispute resolution clauses including governing law. The authors highlight common issues surrounding the application of these clauses in practice and, where appropriate, make drafting recommendations based on their analysis of case law and the operation of relevant statutes. This is a very accessible resource for all commercial practitioners.
Resumo:
The productivity of the construction industry has a significant effect on national economic growth. Gains from higher construction productivity flow through the economy, as all industries rely on construction to some extent as part of their business investment. Contractions and expansions of economic activity are common phenomena in an economy. Three construction cycles occurred between the years 1970 and 2011 in Malaysia. The relationships between construction productivity and economic development are examined by the partial correlation method to establish the underlying factors driving the change in construction productivity. Construction productivity is statistically significantly correlated with gross domestic product (GDP) per capita in a positive direction for the 1985–98 and 1998–2009 cycles, but not the 1970–85 cycle. Fluctuations in construction activities and the influx of foreign workers underlie the changes of construction productivity in the 1985–98 cycle. There was less fluctuation in construction activities in the 1998–2009 cycle, with changes being mainly due to the fiscal stimulation policies of the government in attempting to stabilize the economy. The intensive construction of mega-projects resulted in resource constraints and cost pressures during the 1980s and 1990s. A better management of the ‘boom-bust’ nature of the construction business cycle is required to maintain the capability and capacity of the industry.
Resumo:
This study investigates potential demand for infrastructure investment for alternative fuel vehicles by applying stated preference methods to a Japanese sample. The potential demand is estimated on the basis of how much people are willing to pay for alternative fuel vehicles under various refueling scenarios. Using the estimated parameters, the economic efficiency of establishing battery-exchange stations for electric vehicles is examined. The results indicate that infrastructural development of battery-exchange stations can be efficient when electric vehicle sales exceed 5.63% of all new vehicle sales. Further, we find a complementary relationship between the cruising ranges of alternative fuel vehicles and the infrastructure established.
Resumo:
The construction industry is one of the largest sources of carbon emissions. Manufacturing of raw materials, such as cement, steel and aluminium, is energy intensive and has considerable impact on carbon emissions level. Due to the rising recognition of global climate change, the industry is under pressure to reduce carbon emissions. Carbon labelling schemes are therefore developed as meaningful yardsticks to measure and compare carbon emissions. Carbon labelling schemes can help switch consumer-purchasing habits to low-carbon alternatives. However, such switch is dependent on a transparent scheme. The principle of transparency is highlighted in all international greenhouse gas (GHG) standards, including the newly published ISO 14067: Carbon footprint of products – requirements and guidelines for quantification and communication. However, there are few studies which systematically investigate the transparency requirements in carbon labelling schemes. A comparison of five established carbon labelling schemes, namely the Singapore Green Labelling Scheme, the CarbonFree (the U.S.), the CO2 Measured Label and the Reducing CO2 Label (UK), the CarbonCounted (Canada), and the Hong Kong Carbon Labelling Scheme is therefore conducted to identify and investigate the transparency requirements. The results suggest that the design of current carbon labels have transparency issues relating but not limited to the use of a single sign to represent the comprehensiveness of the carbon footprint. These transparency issues are partially caused by the flexibility given to select system boundary in the life cycle assessment (LCA) methodology to measure GHG emissions. The primary contribution of this study to the construction industry is to reveal the transparency requirements from international GHG standards and carbon labels for construction products. The findings also offer five key strategies as practical implications for the global community to improve the performance of current carbon labelling schemes on transparency.
Resumo:
Describes the development and testing of a robotic system for charging blast holes in underground mining. The automation system supports four main tactical functions: detection of blast holes; teleoperated arm pose control; automatic arm pose control; and human-in-the-loop visual servoing. We present the system architecture, and analyse the major components, Hole detection is crucial for automating the process, and we discuss theoretical and practical aspects in detail. The sensors used are laser range finders and cameras installed in the end effector. For automatic insertion, we consider image processing techniques to support visual servoing the tool to the hole. We also discuss issues surrounding the control of heavy-duty mining manipulators, in particular, friction, stiction, and actuator saturation.