978 resultados para Constant pressure sprayer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pressure dependence of the Raman spectra of RbIO4 has been investigated up to 27.3 GPa at room temperature using the diamond-anvil cell. The changes in the Raman spectra show clearly two pressure-induced phase transitions at 5.3 GPa from scheelite to pseudoscheelite and at 7.2 GPa from pseudoscheelite to wolframite. There is an indication of a possible phase transition at 18.3 GPa from wolframite to a denser complex structure. These transitions follow the same sequence as in other compounds such as alkali perrehenates, which crystallize in the scheelite structure. The systematics in pressure-induced phase transitions in alkali periodates is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new formulation of the stability of boundary-layer flows in pressure gradients is presented, taking into account the spatial development of the flow and utilizing a special coordinate transformation. The formulation assumes that disturbance wavelength and eigenfunction vary downstream no more rapidly than the boundary-layer thickness, and includes all terms nominally of order R(-1) in the boundary-layer Reynolds number R. In Blasius flow, the present approach is consistent with that of Bertolotti et al. (1992) to O(R(-1)) but simpler (i.e. has fewer terms), and may best be seen as providing a parametric differential equation which can be solved without having to march in space. The computed neutral boundaries depend strongly on distance from the surface, but the one corresponding to the inner maximum of the streamwise velocity perturbation happens to be close to the parallel flow (Orr-Sommerfeld) boundary. For this quantity, solutions for the Falkner-Skan flows show the effects of spatial growth to be striking only in the presence of strong adverse pressure gradients. As a rational analysis to O(R(-1)) demands inclusion of higher-order corrections on the mean flow, an illustrative calculation of one such correction, due to the displacement effect of the boundary layer, is made, and shown to have a significant destabilizing influence on the stability boundary in strong adverse pressure gradients. The effect of non-parallelism on the growth of relatively high frequencies can be significant at low Reynolds numbers, but is marginal in other cases. As an extension of the present approach, a method of dealing with non-similar flows is also presented and illustrated. However, inherent in the transformation underlying the present approach is a lower-order non-parallel theory, which is obtained by dropping all terms of nominal order R(-1) except those required for obtaining the lowest-order solution in the critical and wall layers. It is shown that a reduced Orr-Sommerfeld equation (in transformed coordinates) already contains the major effects of non-parallelism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work deals with an ultrasonic type of wave propagation characteristics of monolayer graphene on silicon (Si) substrate. An atomistic model of a hybrid lattice involving a hexagonal lattice of graphene and surface atoms of diamond lattice of Si is developed to identify the carbon-silicon bond stiffness. Properties of this hybrid lattice model is then mapped into a nonlocal continuum framework. Equivalent force constant due to Si substrate is obtained by minimizing the total potential energy of the system. For this equilibrium configuration, the nonlocal governing equations are derived to analyze the ultrasonic wave dispersion based on spectral analysis. From the present analysis we show that the silicon substrate affects only the flexural wave mode. The frequency band gap of flexural mode is also significantly affected by this substrate. The results also show that, the silicon substrate adds cushioning effect to the graphene and it makes the graphene more stable. The analysis also show that the frequency bang gap relations of in-plane (longitudinal and lateral) and out-of-plane (flexural) wave modes depends not only on the y-direction wavenumber but also on nonlocal scaling parameter. In the nonlocal analysis, at higher values of the y-directional wavenumber, a decrease in the frequency band gap is observed for all the three fundamental wave modes in the graphene-silicon system. The atoms movement in the graphene due to the wave propagation are also captured for all the tree fundamental wave modes. The results presented in this work are qualitatively different from those obtained based on the local analysis and thus, are important for the development of graphene based nanodevices such as strain sensor, mass and pressure sensors, atomic dust detectors and enhancer of surface image resolution that make use of the ultrasonic wave dispersion properties of graphene. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the effects of constant and cyclic power loads on the evolution of interfacial reaction layers in lead-free solder interconnections are presented. Firstly, the differences in the growth behavior of intermetallic compound (IMC) layers at the cathode and anode sides of the interconnections are rationalized. This is done by considering the changes in the intrinsic fluxes of elements owing to electromigration as well as taking into account the fact that the growth of Cu3Sn and Cu6Sn5 are coupled via interfacial reactions. In this way, better understanding of the effect of electron flux on the growth of each individual layer in the Cu-Sn system can be achieved. Secondly, it is shown that there is a distinct difference between steady-state current stressing (constant current, constant temperature) and power cycling with alternating on- and off-cycle periods (accompanied by a change of temperature). The reasons behind the observed differences are subsequently discussed. Finally, special care is taken to ensure that the current densities are chosen in such a way that there is no risk for even partial melting of the solder interconnections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a combination of a logarithmic spiral and a straight line as a failure surface, comprehensive charts have been developed to determine the passive earth pressure coefficients and the positions of the critical failure surface for positive as well as negative wall friction angles. Translational movement of the wall has been examined in detail, considering the soil as either an associated flow dilatant material or a non-dilatant material, to determine the kinematic admissibility of the limit equilibrium solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The frequency response of the dielectric constant (epsilon(r)), the loss tangent (tan delta) and impedance Z of potassium acid phthalate (KAP) single crystals, monitored along the polar axis, exhibit strong resonances in the frequency range 50-200 kHz, depending on the dimensions of the sample. The observed resonance effect, which is strongly dependent on the geometric shape and size of the sample, is attributed to its piezoelectric nature. The resonance peak positions have been monitored as a function of both temperature and uniaxial pressure. The stiffness coefficient (C), computed based on the resonance data, is found to decrease with increasing temperature and increase with increasing pressure. The electro-mechanical coupling coefficient (k), obtained by resonance-anti-resonance method, has also been found to increase with rise in temperature. The epsilon(r) behaviour along the polar axis, as a function of temperature is consistent with that of k. The preliminary results on the influence, of partial replacement of K+ ions in the KAP crystal by Cs+ and Li+ ions, on the observed piezoelectric resonance effects are also included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A reversible pressure-induced phase transition in lanthanum nickel ferrate (LaNi0.5Fe0.5O3) manifests itself in the infrared spectrum of the transition metal-oxygen stretching (nu(TM-O)) modes by the emergence of new peaks at pressures greater than similar to 1.4 x 10(9) Pa. Analogies to this transition are made by considering charge transfer in dilanthanum cuprate (La2CuO4) and its modification by partial substitution of copper ions by chromium ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental ionic conductivity of different alkali ions in water shows markedly different dependences on pressure. Existing theories such as that of Hubbard-Onsager are unable to explain these dependences on pressure of the ionic conductivity for all ions. We report molecular dynamics investigation of potassium chloride solution at low dilution in water at several pressures between 1 bar and 2 kbar. Two different potential models have been employed. One of the models successfully reproduces the experimentally observed trend in ionic conductivity of K+ ions in water over the 0.001-2 kbar range. We also propose a theoretical explanation, albeit at a qualitative level, to account for the dependence of ionic conductivity on pressure in terms of the previously studied Levitation Effect. It also provides a microscopic picture in terms of the pore network in liquid water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead Zirconate (PbZrO3) thin films were deposited by pulsed laser ablation method. Pseudocubic (110) oriented in-situ films were grown at low pressure. The field enforced anti-ferroelectric (AFE) to ferroelectric (FE) phase transformation behaviour was investigated by means of a modified Sawyer Tower circuit as well as capacitance versus applied voltage measurements. The maximum polarisation obtained was 36 mu C cm(-2) and the critical field to induce ferroelectric state and to reverse the antiferroelectric slates were 65 and 90 kV cm(-1) respectively. The dielectric properties were investigated as a function of frequency and temperature. The dielectric constant of the AFE lead zirconate thin him was 190 at 100 kHz which is more than the bulk ceramic value (120) with a dissipation factor of less than 0.07. The polarisation switching kinetics of the antiferroelectric PbZrO3 thin films showed that the switching time to be around 275 ns between antipolar state to polar states. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The laser ablated barium strontium titanate (BST) thin films were characterized in terms of composition, structure, microstructure and electrical properties. Films deposited at 300 degrees C under 50 mTorr oxygen pressure and 3 J cm(-2) laser fluence and further annealed at 600 degrees C in flowing oxygen showed a dielectric constant of 467 and a dissipation factor of 0.02. The room-temperature current-voltage characteristics revealed a space charge limited conduction (SCLC) mechanism, though at low fields the effect of the electrodes was predominant. The conduction mechanism was thoroughly-investigated in terms of Schottky emission at low fields, and bulk-limited SCLC at high fields. The change over to the bulk-limited conduction process from the electrode-limited Schottky emission was, attributed to the process of tunneling through the electrode interface at high fields resulting into the lowering of the electrode contact resistance and consequently giving rise to a bulk limited conduction process. The predominance of SCLC mechanism in the films suggests that the bulk properties are only revealed if the depletion width at the electrode interface is thin enough to allow the tunneling process to take place. This condition is only favorable if the him thickness is high or if the doping concentration is high enough. In the present case the film thickness ranged from 0.3 to 0.7 mu m which was suitable to show the transition mentioned above. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a simple current error space vector based hysteresis controller for two-level inverter fed Induction Motor (IM) drives. This proposed hysteresis controller retains all advantages of conventional current error space vector based hysteresis controllers like fast dynamic response, simple to implement, adjacent voltage vector switching etc. The additional advantage of this proposed hysteresis controller is that it gives a phase voltage frequency spectrum exactly similar to that of a constant switching frequency space vector pulse width modulated (SVPWM) inverter. In this proposed hysteresis controller the boundary is computed online using estimated stator voltages along alpha and beta axes thus completely eliminating look up tables used for obtaining parabolic hysteresis boundary proposed in. The estimation of stator voltage is carried out using current errors along alpha and beta axes and steady state model of induction motor. The proposed scheme is simple and capable of taking inverter upto six step mode operation, if demanded by drive system. The proposed hysteresis controller based inverter fed drive scheme is simulated extensively using SIMULINK toolbox of MATLAB for steady state and transient performance. The experimental verification for steady state performance of the proposed scheme is carried out on a 3.7kW IM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There exists a maximum in the products of the saturation properties such as T(p(c) - p) and p(T-c - T) in the vapour-liquid coexistence region for all liquids. The magnitudes of those maxima on the reduced coordinate system provide an insight to the molecular complexity of the liquid. It is shown that the gradients of the vapour pressure curve at temperatures where those maxima occur are directly given by simple relations involving the reduced pressures and temperatures at that point. A linear relation between the maximum values of those products of the form [p(r)(1 - T-r)](max) = 0.2095 - 0.2415 [T-r(1 - p(r))](max) has been found based on a study of 55 liquids ranging from non-polar monatomic cryogenic liquids to polar high boiling point liquids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Converging swirling liquid jets from pressure swirl atomizers injected into atmospheric air are studied experimentally using still and cine photographic techniques in the context of liquid-liquid coaxial swirl atomizers used in liquid rocket engines. The jet exhibits several interesting flow features in contrast to the nonswirling liquid jets (annular liquid jets) studied in the literature. The swirl motion creates multiple converging sections in the jet, which gradually collapse one after the other due to the liquid sheet breakup with increasing Weber number (We). This is clearly related to the air inside the converging jet which exhibits a peculiar variation of the pressure difference across the liquid sheet, DeltaP, with We. The variation shows a decreasing trend of DeltaP with We in an overall sense, but exhibits local maxima and minima at specific flow conditions. The number of maxima or minima observed in the curve depends on the number of converging sections seen in the jet at the lowest We. An interesting feature of this variation is that it delineates the regions of prominent jet flow features like the oscillating jet region, nonoscillating jet region, number of converging sections, and so on. Numerical predictions of the jet characteristics are obtained by modifying an existing nonswirling liquid jet model by including the swirling motion. The comparison between the experimental and numerical measurements shows that the pressure difference across the liquid sheet is important for the jet behavior and cannot be neglected in any theoretical analysis. (C) 2002 American Institute of Physics.