901 resultados para Conduta muscular


Relevância:

10.00% 10.00%

Publicador:

Resumo:

From 2008-09 to 2012-13, the most prevalent worker compensation claim in the Queensland Ambulance Service (QAS) was musculoskeletal injuries at >80%. This is consistent with literature that shows Musculoskeletal Disorders (MSD) was one of the front runners for workplace injuries among many professions. In an attempt to reduce the injury rate and related claims, the QAS created a selection criterion for their workers based on the Health Related Fitness Test. This method intended to select workers based upon their fitness level, instead of selecting for their ability to perform the tasks or modify the tasks to better suit the workers. With injury rates remaining high, further research produced the Patient Handling Equipment Project Report, which provided the background for the Manual Handling Program Book. The Manual Handling Program Book however lacks in accurately addressing musculoskeletal hazards; actions which cause or avoid injury, correct posture and motion for patient movement, muscular biomechanics, static and dynamic workload including activities causing strain, and equipment use in relation to musculoskeletal hazards. The exploratory research aims to better understand the ambulance service’s perception of Manual Materials Handling (MMH), how it relates to musculoskeletal injuries and how the service has attempted to reduce its prevalence. Based on a literature review and a critical analysis of the QAS Health Related Fitness Test, QAS Patient Handling Equipment Project Report and the QAS Manual Handling Program Book, an understanding of their shortfalls in the prevention of musculoskeletal injuries was gained. This entails understanding the work tasks, workloads, strains and workflow of paramedics. This research creates a starting point for further research into musculoskeletal injuries in paramedics. This study specifically looks at hazards related to musculoskeletal disorders. It identifies work system deficiencies that contribute to the prevalence of musculoskeletal injuries, and possible interventions to avoid them in paramedics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tracheal cartilage has been widely regarded as a linear elastic material either in experimental studies or in analytic and numerical models. However, it has been recently demonstrated that, like other fiber-oriented biological tissues, tracheal cartilage is a nonlinear material, which displays higher strength in compression than in extension. Considering the nonlinearity requires a more complex theoretical frame work and costs more to simulate. This study aims to quantify the deviation due to the simplified treatment of the tracheal cartilage as a linear material. It also evaluates the improved accuracy gained by considering the nonlinearity. Pig tracheal rings were used to exam the mechanical properties of cartilage and muscular membrane. By taking into account the asymmetric shape of tracheal cartilage, the collapse behavior of complete rings was simulated, and the compliance of airway and stress in the muscular membrane were discussed. The results obtained were compared with those assuming linear mechanical properties. The following results were found: (1) Models based on both types of material properties give a small difference in representing collapse behavior; (2) regarding compliance, the relative difference is big, ranging from 10 to 40% under negative pressure conditions; and (3) the difference in determining stress in the muscular membrane is small too: <5%. In conclusion, treating tracheal cartilage as a linear material will not cause big deviations in representing the collapse behavior, and mechanical stress in the muscular part, but it will induce a big deviation in predicting the compliance, particularly when the transmural pressure is lower than -0.5 kPa. The results obtained in this study may be useful in both understanding the collapse behavior of trachea and in evaluating the error induced by the simplification of treating the tracheal cartilage as a linear elastic material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The shape of tracheal cartilage has been widely treated as symmetric in analytical and numerical models. However, according to both histological images and in vivo medical image, tracheal cartilage is of highly asymmetric shape. Taking the cartilage as symmetric structure will induce bias in calculation of the collapse behavior, as well as compliance and muscular stress. However, this has been rarely discussed. In this paper, tracheal collapse is represented by considering its asymmetric shape. For comparison, the symmetric shape, which is reconstructed by half of the cartilage, is also presented. A comparison of cross-sectional area, compliance of airway and stress in the muscular membrane, determined by asymmetric shape and symmetric shape is made. The result indicates that the symmetric assumption brings a small error, around 5% in predicting the cross-sectional area under loading conditions. The relative error of compliance is more than 10%. Particularly when the pressure is close to zero, the error could be more than 50%. The model considering the symmetric shape results in a significant difference in predicting stress in muscular membrane by either under- or over-estimating it. In conclusion, tracheal cartilage should not be treated as a symmetric structure. The results obtained in this study are helpful in evaluating the error induced by the assumption in geometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physical and psychological decline is common in the post-treatment breast cancer population, yet the efficacy of concurrent interventions to meet both physical- psychosocial needs in this population has not been extensively examined. PURPOSE: This study explores the effects of a combined exercise and psychosocial intervention model on selected physiological-psychological parameters in post-treated breast cancer. METHODS: Forty-one breast cancer survivors were randomly assigned to one of four groups for an 8-week intervention: exercise only [EX, n=13] (aerobic and resistance training), psychosocial therapy only [PS, n=11] (biofeedback), combined EX and PS [EX+PS, n=11], or to control conditions [CO, n=6]. Mean delta score (post-intervention - baseline) were calculated for each of the following: body weight, % body fat (skin folds), predicted VO2max (Modified Bruce Protocol), overall dynamic muscular endurance [OME] (RMCRI protocol), static balance (Single leg stance test), dynamic balance (360° turn and 4-square step test), fatigue (Revised Piper Scale), and quality of life (FACT-B). A one-way ANOVA was used to analyze the preliminary results of this on-going randomized trial. RESULTS: Overall, there were significant differences in the delta scores for predicted VO2max, OME, and dynamic balance among the 4 groups (p<0.05). The EX+PS group showed a significant improvement in VO2max compared with the PS group (4.2 ± 3.8 vs. -0.9 ± 4.2 mL/kg/min; p<0.05). Both the EX+PS and EX groups showed significant improvements in OME compared with the PS and CO groups (44.5 ± 23.5 and 43.4 ± 22.1 vs. -3.9 ± 15.2 and 2.7 ± 13.7 repetitions; p<0.05). All 3 intervention groups showed significant improvements in dynamic balance compared with the CO group (-0.8 ± 0.6, -0.6 ± 0.8, and -0.6 ±1.0 vs. 0.6 ± 0.6 seconds; p<0.05). Overall, changes in fatigue tended towards significance among the 4 groups (p = 0.08), with decreased fatigue in the intervention groups and increased fatigue in the CO group. CONCLUSIONS: Our preliminary findings suggest that EX and PS seem to produce greater positive changes in the outcome measures than CO. However, at this point no definite conclusions can be made on the additive effects of combining the EX and PS interventions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genetics of heifer performance in tropical 'wet' and 'dry' seasons, and relationships with steer performance, were studied in Brahman (BRAH) and Tropical Composite (TCOMP) (50% Bos indicus, African Sanga or other tropically adapted Bos taurus; 50% non-tropically adapted Bos taurus) cattle of northern Australia. Data were from 2159 heifers (1027 BRAH, 1132 TCOMP), representing 54 BRAH and 51 TCOMP sires. Heifers were assessed after post-weaning 'wet' (ENDWET) and 'dry' (ENDDRY) seasons. Steers were assessed post-weaning, at feedlot entry, over a 70-day feed test, and after similar to 120-day finishing. Measures studied in both heifers and steers were liveweight (LWT), scanned rump fat, rib fat and M. longissimus area (SEMA), body condition score (CS), hip height (HH), serum insulin-like growth factor-I concentration (IGF-I), and average daily gains (ADG). Additional steer measures were scanned intra-muscular fat%, flight time, and daily (DFI) and residual feed intake (RFI). Uni- and bivariate analyses were conducted for combined genotypes and for individual genotypes. Genotype means were predicted for a subset of data involving 34 BRAH and 26 TCOMP sires. A meta-analysis of genetic correlation estimates examined how these were related to the difference between measurement environments for specific traits. There were genotype differences at the level of means, variances and genetic correlations. BRAH heifers were significantly (P < 0.05) faster-growing in the 'wet' season, slower-growing in the 'dry' season, lighter at ENDDRY, and taller and fatter with greater CS and IGF-I at both ENDWET and ENDDRY. Heritabilities were generally in the 20 to 60% range for both genotypes. Phenotypic and genetic variances, and genetic correlations, were commonly lower for BRAH. Differences were often explained by the long period of tropical adaptation of B. indicus. Genetic correlations were high between corresponding measures at ENDWET and ENDDRY, positive between fat and muscle measures in TCOMP but negative in BRAH (mean of 13 estimates 0.50 and -0.19, respectively), and approximately zero between steer feedlot ADG and heifer ADG in BRAH. Numerous genetic correlations between heifers and steers differed substantially from unity, especially in BRAH, suggesting there may be scope to select differently in the sexes where that would aid the differing roles of heifers and steers in production. Genetic correlations declined as measurement environments became more different, the rates of decline (environment sensitivity) sometimes differing with genotype. Similar measures (LWT, HH and ADG; IGF-I at ENDWET in TCOMP) were genetically correlated with steer DFI in heifers as in steers. Heifer SEMA was genetically correlated with steer feedlot RFI in BRAH (0.75 +/- 0.27 at ENDWET, 0.66 +/- 0.24 at ENDDRY). Selection to reduce steer RFI would reduce SEMA in BRAH heifers but otherwise have only small effects on heifers before their first joining.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sodium cyanide poison is potentially a more humane method to control wild dogs than sodium fluoroacetate (1080) poison. This study quantified the clinical signs and duration of cyanide toxicosis delivered by the M-44 ejector. The device delivered a nominal 0.88 g of sodium cyanide, which caused the animal to loose the menace reflex in a mean of 43 s, and the animal was assumed to have undergone cerebral hypoxia after the last visible breath. The mean time to cerebral hypoxia was 156 s for a vertical pull and 434 s for a side pull. The difference was possibly because some cyanide may be lost in a side pull. There were three distinct phases of cyanide toxicosis: the initial phase was characterised by head shaking, panting and salivation; the immobilisation phase by incontinence, ataxia and loss of the righting reflex; and the cerebral hypoxia phase by a tetanic seizure. Clinical signs that were exhibited in more than one phase of cyanide toxicosis included retching, agonal breathing, vocalisation, vomiting, altered levels of ocular reflex, leg paddling, tonic muscular spasms, respiratory distress and muscle fasciculations of the muzzle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skeletal muscle cells are highly specialised in order to accomplish their function. During development, the fusion of hundreds of immature myoblasts creates large syncytial myofibres with a highly ordered cytoplasm filled with packed myofibrils. The assembly and organisation of contractile myofibrils must be tightly controlled. Indeed, the number of proteins involved in sarcomere building is impressive, and the role of many of them has only recently begun to be elucidated. Myotilin was originally identified as a high affinity a-actinin binding protein in yeast twohybrid screen. It was then found to interact also with filamin C, actin, ZASP and FATZ-1. Human myotilin is mainly expressed in striated muscle and induces efficient actin bundling in vitro and in cells. Moreover, mutations in myotilin cause different forms of muscle disease, now collectively known as myotilinopathies. In this thesis, consisting of three publications, the work on the mouse orthologue is presented. First, the cloning and molecular characterisation of the mouse myotilin gene showed that human and mouse myotilin share high sequence homology and a similar expression pattern and gene regulation. Functional analysis of the mouse promoter revealed the myogenic factor-binding elements that are required for myotilin gene transcription. Secondly, expression of myotilin was studied during mouse embryogenesis. Surprisingly, myotilin was expressed in a wide array of tissues at some stages of development; its expression pattern became more restricted at perinatal stages and in adult life. Immunostaining of human embryos confirmed broader myotilin expression compared to the sarcomeric marker titin. Finally, in the third article, targeted deletion of myotilin gene in mice revealed that it is not essential for muscle development and function. These data altogether indicate that the mouse can be used as a model for human myotilinopathy and that loss of myotilin does not alter significantly muscle structure and function. Therefore, disease-associated mutant myotilin may act as a dominant myopathic factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poikkijuovaisen luuranko- ja sydänlihaksen supistumisyksikkö, sarkomeeri, koostuu tarkoin järjestyneistä aktiini- ja myosiinisäikeistä. Rakenne eroaa muista solutyypeistä, joissa aktiinisäikeistö muovautuu jatkuvasti ja sen järjestyminen säätelee solun muotoa, solujakautumista, soluliikettä ja solunsisäisten organellien kuljetusta. Myotilin, palladin ja myopalladin kuuluvat proteiiniperheeseen, jonka yhteispiirteenä ovat immunoglobuliinin kaltaiset (Igl) domeenit. Proteiinit liittyvät aktiinitukirankaan ja niiden arvellaan toimivan solutukirangan rakenne-elementteinä ja säätelijöinä. Myotilinia ja myopalladinia ilmennetään poikkijuovaisessa lihaksessa. Sen sijaan palladinin eri silmukointimuotoja tavataan monissa kudostyypeissä kuten hermostossa, ja eri muodoilla saattaa olla solutyypistä riippuvia tehtäviä. Poikkijuovaisessa lihaksessa kaikki perheen jäsenet sijaitsevat aktiinisäikeitä yhdistävässä Z-levyssä ja ne sitovat Z-levyn rakenneproteiinia, -aktiniinia. Myotilingeenin pistemutaatiot johtavat periytyviin lihastauteihin, kun taas palladinin mutaatioiden on kuvattu liittyvän periytyvään haimasyöpään ja lisääntyneeseen sydäninfarktin riskiin. Tässä tutkimuksessa selvitettin myotilinin ja pallainin toimintaa. Kokeissa löydettiin uusia palladinin 90-92kDa alatyyppiin sitoutuvia proteiineja. Yksi niistä on aktiinidynamiikkaa säätelevä profilin. Profilinilla on kahdenlaisia tehtäviä; se edesauttaa aktiinisäikeiden muodostumista, mutta se voi myös eristää yksittäisiä aktiinimolekyylejä ja edistää säikeiden hajoamista. Solutasolla palladinin ja profilinin sijainti on yhtenevä runsaasti aktiinia sisältävillä solujen reuna-alueilla. Palladinin ja profilinin sidos on heikko ja hyvin dynaaminen, joka sopii palladinin tehtävään aktiinisäideiden muodostumisen koordinoijana. Toinen palladinin sitoutumiskumppani on aktiinisäikeitä yhteensitova -aktiniini. -Aktiniini liittää solutukirangan solukalvon proteiineihin ja ankkuroi solunsisäisiä viestintämolekyylejä. Sitoutumista välittävä alue on hyvin samankaltainen palladinissa ja myotilinissa. Luurankolihaksen liiallinen toistuva venytys muuttaa Z-levyjen rakennetta ja muotoa. Prosessin aikana syntyy uusia aktiinifilamenttejä sisältäviä tiivistymiä ja lopulta uusia sarkomeereja. Löydöstemme perusteella myotilinin uudelleenjärjestyminen noudattaa aktiinin muutoksia. Tämä viittaa siihen, että myotilin liittää yhteen uudismuodostuvia aktiinisäikeitä ja vakauttaa niitä. Myotilin saattaa myös ankkuroida viesti- tai rakennemolekyylejä, joiden tehtävänä on edesauttaa Z-levyjen uudismuodostusta. Tulostemme perusteella arvelemme, että myotilin toimii Z-levyjen rakenteen vakaajana ja aktiinisäikeiden säätelijänä. Palladinin puute johtaa sikiöaikaiseen kuolemaan hiirillä, mutta myotilinin puutoksella ei ole samanlaisia vaikutuksia. Tuotettujen myotilin poistogeenisten hiirten todetiin syntyvän ja kehittyvän normaalisti eikä niillä esiintynyt rakenteellisia tai toiminnallisia häiriöitä. Toisaalta aiemmissa kokeissa, joissa hiirille on siirretty ihmisen lihastautia aikaansaava myotilingeeni, nähdään samankaltaisia kuin sairailla ihmisillä. Näin ollen muuntunut myotilin näyttä olevan lihaksen toiminnalle haitallisempi kuin myotilinin puute. Myotilinin ja palladinin yhteisvaikutusta selvittääksemme risteytimme myotilin poistegeenisen hiiren ja hiirilinjan, joka ilmentää puutteellisesti palladinin 200 kDa muotoa. Puutteellisesti 200 kDa palladinia ilmentävien hiirten sydänlihaksessa todettiin vähäisiä hienorakenteen muutoksia, mutta risteytetyillä hiirillä tavattiin rakenteellisia ja toiminnallisia muutoksia myös luurankolihaksessa. Tulosten perusteella voidaan todeta, että palladinin 200 kDa muoto säätelee sydänlihassolujen rakennetta. Luurankolihaksessa sen sijaan myotilinilla ja palladinilla näyttäisi olevan päällekkäisiä tehtäviä.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carotenoids are associated with various health benefits, such as prevention of age-related macular degeneration, cataract, certain cancers, rheumatoid arthritis, muscular dystrophy and cardiovascular problems. As microalgae contain considerable amounts of carotenoids, there is a need to find species with high carotenoid content. Out of hundreds of Australian isolates, twelve microalgal species were screened for carotenoid profiles, carotenoid productivity, and in vitro antioxidant capacity (total phenolic content (TPC) and ORAC). The top four carotenoid producers at 4.68-6.88 mg/g dry weight (DW) were Dunaliella salina, Tetraselmis suecica, Isochrysis galbana, and Pavlova salina. TPC was low, with D. salina possessing the highest TPC (1.54 mg Gallic Acid Equivalents/g DW) and ORAC (577 μmol Trolox Equivalents/g DW). Results indicate that T. suecica, D. salina, P. salina and I. galbana could be further developed for commercial carotenoid production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis focuses on mutations of POLG1 gene encoding catalytic subunit polγ-α of mitochondrial DNA polymerase gamma holoenzyme (polG) and the association of mutations with different clinical phenotypes. In addition, particular defective mutant variants of the protein were characterized biochemically in vitro. PolG-holoenzyme is the sole DNA polymerase found in mitochondria. It is involved in replication and repair of the mitochondrial genome, mtDNA. Holoenzyme also includes the accessory subunit polγ-β, which is required for the enhanced processivity of polγ-α. Defective polγ-α causes accumulation of secondary mutations on mtDNA, which leads to a defective oxidative phosphorylation system. The clinical consequences of such mutations are variable, affecting nervous system, skeletal muscles, liver and other post-mitotic tissues. The aims of the studies included: 1) Determination of the role of POLG1 mutations in neurological syndromes with features of mitochondrial dysfunction and an unknown molecular cause. 2) Development and set up of diagnostic tests for routine clinical purposes. 3) Biochemical characterization of the functional consequences of the identified polγ-α variants. Studies describe new neurological phenotypes in addition to PEO caused by POLG1 mutations, including parkinsonism, premature amenorrhea, ataxia and Parkinson s disease (PD). POLG1 mutations and polymorphisms are both common and/or potential genetic risk factors at least among the Finnish population. The major findings and applications reported here are: 1) POLG1 mutations cause parkinsonism and premature menopause in PEO families in either a recessive or a dominant manner. 2) A common recessive POLG1 mutations (A467T and W748S) in the homozygous state causes severe adult or juvenile-onset ataxia without muscular symptoms or histological or mtDNA abnormalities in muscles. 3) A common recessive pathogenic change A467T can also cause a mild dominant disease in heterozygote carriers. 4) The A467T variant shows reduced polymerase activity due to defective template binding. 5) Rare polyglutamine tract length variants of POLG1 are significantly enriched in Finnish idiopathic Parkinson s disease patients. 6) Dominant mutations are clearly restricted to the highly conserved polymerase domain motifs, whereas recessive ones are more evenly distributed along the protein. The present results highlight and confirm the new role of mitochondria in parkinsonism/Parkinson s disease and describe a new mitochondrial ataxia. Based on these results, a POLG1 diagnostic routine has been set up in Helsinki University Central Hospital (HUSLAB).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Foot ulceration is the main precursor to lower limb amputation in patients with type 2 diabetes worldwide. Biomechanical factors have been implicated in the development of foot ulceration; however the association of these factors to ulcer healing remains less clear. It may be hypothesised that abnormalities in temporal spatial parameters (stride to stride measurements), kinematics (joint movements), kinetics (forces on the lower limb) and plantar pressures (pressure placed on the foot during walking) contribute to foot ulcer healing. The primary aim of this study is to establish the biomechanical characteristics (temporal spatial parameters, kinematics, kinetics and plantar pressures) of patients with plantar neuropathic foot ulcers compared to controls without a history of foot ulcers. The secondary aim is to assess the same biomechanical characteristics in patients with foot ulcers and controls over-time to assess whether these characteristics remain the same or change throughout ulcer healing. Methods/Design The design is a case–control study nested in a six-month longitudinal study. Cases will be participants with active plantar neuropathic foot ulcers (DFU group). Controls will consist of patients with type 2 diabetes (DMC group) and healthy participants (HC group) with no history of foot ulceration. Standardised gait and plantar pressure protocols will be used to collect biomechanical data at baseline, three and six months. Descriptive variables and primary and secondary outcome variables will be compared between the three groups at baseline and follow-up. Discussion It is anticipated that the findings from this longitudinal study will provide important information regarding the biomechanical characteristic of type 2 diabetes patients with neuropathic foot ulcers. We hypothesise that people with foot ulcers will demonstrate a significantly compromised gait pattern (reduced temporal spatial parameters, kinematics and kinetics) at base line and then throughout the follow-up period compared to controls. The study may provide evidence for the design of gait-retraining, neuro-muscular conditioning and other approaches to off-load the limbs of those with foot ulcers in order to reduce the mechanical loading on the foot during gait and promote ulcer healing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myotonic dystrophies type 1 (DM1) and type 2 (DM2) are the most common forms of muscular dystrophy affecting adults. They are autosomal dominant diseases caused by microsatellite tri- or tetranucleotide repeat expansion mutations in transcribed but not translated gene regions. The mutant RNA accumulates in nuclei disturbing the expression of several genes. The more recently identified DM2 disease is less well known, yet more than 300 patients have been confirmed in Finland thus far, and the true number is believed to be much higher. DM1 and DM2 share some features in general clinical presentation and molecular pathology, yet they show distinctive differences, including disease severity and differential muscle and fiber type involvement. However, the molecular differences underlying DM1 and DM2 muscle pathology are not well understood. Although the primary tissue affected is muscle, both DMs show a multisystemic phenotype due to wide expression of the mutation-carrying genes. DM2 is particularly intriguing, as it shows an incredibly wide spectrum of clinical manifestations. For this reason, it constitutes a real diagnostic challenge. The core symptoms in DM2 include proximal muscle weakness, muscle pain, myotonia, cataracts, cardiac conduction defects and endocrinological disturbations; however, none of these is mandatory for the disease. Myalgic pains may be the most disabling symptom for decades, sometimes leading to incapacity for work. In addition, DM2 may cause major socio-economical consequences for the patient, if not diagnosed, due to misunderstanding and false stigmatization. In this thesis work, we have (I) improved DM2 differential diagnostics based on muscle biopsy, and (II) described abnormalities in mRNA and protein expression in DM1 and DM2 patient skeletal muscles, showing partial differences between the two diseases, which may contribute to muscle pathology in these diseases. This is the first description of histopathological differences between DM1 and DM2, which can be used in differential diagnostics. Two novel high-resolution applications of in situ -hybridization have been described, which can be used for direct visualization of the DM2 mutation in muscle biopsy sections, or mutation size determination on extended DNA-fibers. By measuring protein and mRNA expression in the samples, differential changes in expression patterns affecting contractile proteins, other structural proteins and calcium handling proteins in DM2 compared to DM1 were found. The dysregulation at mRNA level was caused by altered transciption and abnormal splicing. The findings reported here indicate that the extent of aberrant splicing is higher in DM2 compared to DM1. In addition, the described abnormalities to some extent correlate to the differences in fiber type involvement in the two disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study identified the molecular defects underlying three lethal fetal syndromes. Lethal Congenital Contracture Syndrome 1 (LCCS1, MIM 253310) and Lethal Arthrogryposis with Anterior Horn Cell Disease (LAAHD, MIM 611890) are fetal motor neuron diseases. They affect the nerve cells that control voluntary muscle movement, and eventually result in severe atrophy of spinal cord motor neurons and fetal immobility. Both LCCS1 and LAAHD are caused by mutations in the GLE1 gene, which encodes for a multifunctional protein involved in posttranscriptional mRNA processing. LCCS2 and LCCS3, two syndromes that are clinically similar to LCCS1, are caused by defective proteins involved in the synthesis of inositol hexakisphosphate (IP6), an essential cofactor of GLE1. This suggests a common mechanism behind these fetal motor neuron diseases, and along with accumulating evidence from genetic studies of more late-onset motor neuron diseases such as Spinal muscular atrophy (SMA) and Amyotrophic lateral sclerosis (ALS), implicates mRNA processing as a common mechanism in motor neuron disease pathogenesis. We also studied gle1-/- zebrafish in order to investigate whether they would be a good model for studying the pathogenesis of LCCS1 and LAAHD. Mutant zebrafish exhibit cell death in their central nervous system at two days post fertilization, and the distribution of mRNA within the cells of mutant zebrafish differs from controls, encouraging further studies. The third lethal fetal syndrome is described in this study for the first time. Cocoon syndrome (MIM 613630) was discovered in a Finnish family with two affected individuals. Its hallmarks are the encasement of the limbs under the skin, and severe craniofacial abnormalities, including the lack of skull bones. We showed that Cocoon syndrome is caused by a mutation in the gene encoding the conserved helix-loop-helix ubiquitous kinase CHUK, also known as IκB kinase α (IKKα). The mutation results in the complete lack of CHUK protein expression. CHUK is a subunit of the IκB kinase enzyme that inhibits NF-κB transcription factors, but in addition, it has an essential, independent role in controlling keratinocyte differentiation, as well as informing morphogenetic events such as limb and skeletal patterning. CHUK also acts as a tumor suppressor, and is frequently inactivated in cancer. This study has brought significant new information about the molecular background of these three lethal fetal syndromes, as well as provided knowledge about the prerequisites of normal human development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although improved outcomes for children on peritoneal dialysis (PD) have been seen in recent years, the youngest patients continue to demonstrate inferior growth, more frequent infections, more neurological sequelae, and higher mortality compared to older children. Also, maintain-ing normal intravascular volume status, especially in anuric patients, has proven difficult. This study was designed to treat and monitor these youngest PD patients, which are relatively many due to the high prevalence of congenital nephrotic syndrome of the Finnish type (CNF, NPHS1) in Finland, with a strict protocol, to evaluate the results and to improve metabolic balance, growth, and development. A retrospective analysis of 23 children under two years of age at onset of PD, treated between 1995 and 2000, was performed to obtain a control population for our prospective PD study. Respectively, 21 patients less than two years of age at the beginning of PD were enrolled in prospective studies between 2001 and 2005. Medication for uremia and nutrition were care-fully adjusted during PD. Laboratory parameters and intravascular volume status were regu-larly analyzed. Growth was analyzed and compared with midparental height. In a prospective neurological study, the risk factors for development and the neurological development was determined. Brain images were surveyed. Hearing was tested. In a retrospective neurological study, the data of six NPHS1 patients with a congruent neurological syndrome was analyzed. All these patients had a serious dyskinetic cerebral palsy-like syndrome with muscular dysto-nia and athetosis (MDA). They also had a hearing defect. Metabolic control was mainly good in both PD patient groups. Hospitalization time shortened clearly. The peritonitis rate diminished. Hypertension was a common problem. Left ventricular hypertrophy decreased during the prospective study period. None of the patients in either PD group had pulmonary edema or dialysis-related seizures. Growth was good and catch-up growth was documented in most patients in both patient groups during PD. Mortality was low (5% in prospective and 9% in retrospective PD patients). In the prospective PD patient group 11 patients (52%) had some risk factor for their neuro-development originating from the predialysis period. The neurological problems, detected be-fore PD, did not worsen during PD and none of the patients developed new neurological com-plications during PD. Brain infarcts were detected in four (19%) and other ischemic lesions in three patients (14%). At the end of this study, 29% of the prospectively followed patients had a major impairment of their neurodevelopment and 43% only minor impairment. In the NPHS1+MDA patients, no clear explanation for the neurological syndrome was found. The brain MRI showed increased signal intensity in the globus pallidus area. Kernic-terus was contemplated to be causative in the hypoproteinemic newborns but it could not be proven. Mortality was as high as 67%. Our results for young PD patients were promising. Metabolic control was acceptable and growth was good. However, the children were significantly smaller when compared to their midparental height. Although many patients were found to have neurological impairment at the end of our follow-up period, PD was a safe treatment whereby the neurodevelopment did not worsen during PD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myopathies are muscular diseases in which muscle fibers degenerate due to many factors such as nutrient deficiency, infection and mutations in myofibrillar etc. The objective of this study is to identify the bio-markers to distinguish various muscle mutants in Drosophila (fruit fly) using Raman Spectroscopy. Principal Components based Linear Discriminant Analysis (PC-LDA) classification model yielding >95% accuracy was developed to classify such different mutants representing various myopathies according to their physiopathology.