824 resultados para Computer-assisted composition
Resumo:
Reconstruction of patient-specific 3D bone surface from 2D calibrated fluoroscopic images and a point distribution model is discussed. We present a 2D/3D reconstruction scheme combining statistical extrapolation and regularized shape deformation with an iterative image-to-model correspondence establishing algorithm, and show its application to reconstruct the surface of proximal femur. The image-to-model correspondence is established using a non-rigid 2D point matching process, which iteratively uses a symmetric injective nearest-neighbor mapping operator and 2D thin-plate splines based deformation to find a fraction of best matched 2D point pairs between features detected from the fluoroscopic images and those extracted from the 3D model. The obtained 2D point pairs are then used to set up a set of 3D point pairs such that we turn a 2D/3D reconstruction problem to a 3D/3D one. We designed and conducted experiments on 11 cadaveric femurs to validate the present reconstruction scheme. An average mean reconstruction error of 1.2 mm was found when two fluoroscopic images were used for each bone. It decreased to 1.0 mm when three fluoroscopic images were used.
Resumo:
This study examined the moderating effect of social and coping motives on distress among young cannabis-using adults. A random sample of 2031 young Swiss adults was interviewed by means of a computer-assisted telephone interview. Cannabis users showed more distress, less positive health behaviour and higher hedonism compared to non-users. Taking motive for use as a moderator variable into consideration, it became evident that only cannabis users with coping motives showed lower mental health, more symptoms of psychopathology, more psychosocial distress and more life events than non-users. Young adults with social motives for use on the other hand did not differ from non-users in terms of distress. These differences between cannabis users with social and those with coping motives remained stable over two years. In both subgroups, participants with regular cannabis use at baseline did not increase distress nor did participants with higher distress at baseline increase the frequency of their cannabis use. Our results suggest that secondary prevention for cannabis users should target especially young adults with coping motives for use.
Resumo:
To study the association between cannabis use and frequent sexual risk behavior, we tested the hypothesis of a situational influence of cannabis use in sexual encounters using a combination of global association study and event-level analysis and examined possible mediator variables, including the personality trait of hedonism/risk preference, psychosocial stress, and HIV-related beliefs, using mediation models. The results of a computer-assisted telephone interview of a random sample of 2790 heterosexual men and women aged 16-24 years showed that risky sexual behavior was more frequent in cannabis-using men and women than in non-using persons. The results did not support a situational effect of cannabis intoxication on sexual risk behavior. The more frequent sexual risk behavior among cannabis users was mediated by decreased intentions to use HIV protection, by lower HIV-self-efficacy, and higher risk preference/hedonism. Only among women psychosocial stress was a partial mediator. The findings show that HIV prevention programs for cannabis-using young adults should emphasize the role of person variables instead of situation variables.
Resumo:
This article reports about the internet based, second multicenter study (MCS II) of the spine study group (AG WS) of the German trauma association (DGU). It represents a continuation of the first study conducted between the years 1994 and 1996 (MCS I). For the purpose of one common, centralised data capture methodology, a newly developed internet-based data collection system ( http://www.memdoc.org ) of the Institute for Evaluative Research in Orthopaedic Surgery of the University of Bern was used. The aim of this first publication on the MCS II was to describe in detail the new method of data collection and the structure of the developed data base system, via internet. The goal of the study was the assessment of the current state of treatment for fresh traumatic injuries of the thoracolumbar spine in the German speaking part of Europe. For that reason, we intended to collect large number of cases and representative, valid information about the radiographic, clinical and subjective treatment outcomes. Thanks to the new study design of MCS II, not only the common surgical treatment concepts, but also the new and constantly broadening spectrum of spine surgery, i.e. vertebro-/kyphoplasty, computer assisted surgery and navigation, minimal-invasive, and endoscopic techniques, documented and evaluated. We present a first statistical overview and preliminary analysis of 18 centers from Germany and Austria that participated in MCS II. A real time data capture at source was made possible by the constant availability of the data collection system via internet access. Following the principle of an application service provider, software, questionnaires and validation routines are located on a central server, which is accessed from the periphery (hospitals) by means of standard Internet browsers. By that, costly and time consuming software installation and maintenance of local data repositories are avoided and, more importantly, cumbersome migration of data into one integrated database becomes obsolete. Finally, this set-up also replaces traditional systems wherein paper questionnaires were mailed to the central study office and entered by hand whereby incomplete or incorrect forms always represent a resource consuming problem and source of error. With the new study concept and the expanded inclusion criteria of MCS II 1, 251 case histories with admission and surgical data were collected. This remarkable number of interventions documented during 24 months represents an increase of 183% compared to the previously conducted MCS I. The concept and technical feasibility of the MEMdoc data collection system was proven, as the participants of the MCS II succeeded in collecting data ever published on the largest series of patients with spinal injuries treated within a 2 year period.
Resumo:
The examination of traffic accidents is daily routine in forensic medicine. An important question in the analysis of the victims of traffic accidents, for example in collisions between motor vehicles and pedestrians or cyclists, is the situation of the impact. Apart from forensic medical examinations (external examination and autopsy), three-dimensional technologies and methods are gaining importance in forensic investigations. Besides the post-mortem multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) for the documentation and analysis of internal findings, highly precise 3D surface scanning is employed for the documentation of the external body findings and of injury-inflicting instruments. The correlation of injuries of the body to the injury-inflicting object and the accident mechanism are of great importance. The applied methods include documentation of the external and internal body and the involved vehicles and inflicting tools as well as the analysis of the acquired data. The body surface and the accident vehicles with their damages were digitized by 3D surface scanning. For the internal findings of the body, post-mortem MSCT and MRI were used. The analysis included the processing of the obtained data to 3D models, determination of the driving direction of the vehicle, correlation of injuries to the vehicle damages, geometric determination of the impact situation and evaluation of further findings of the accident. In the following article, the benefits of the 3D documentation and computer-assisted, drawn-to-scale 3D comparisons of the relevant injuries with the damages to the vehicle in the analysis of the course of accidents, especially with regard to the impact situation, are shown on two examined cases.
Resumo:
Image-guided, computer-assisted neurosurgery has emerged to improve localization and targeting, to provide a better anatomic definition of the surgical field, and to decrease invasiveness. Usually, in image-guided surgery, a computer displays the surgical field in a CT/MR environment, using axial, coronal or sagittal views, or even a 3D representation of the patient. Such a system forces the surgeon to look away from the surgical scene to the computer screen. Moreover, this kind of information, being pre-operative imaging, can not be modified during the operation, so it remains valid for guidance in the first stage of the surgical procedure, and mainly for rigid structures like bones. In order to solve the two constraints mentioned before, we are developing an ultrasoundguided surgical microscope. Such a system takes the advantage that surgical microscopy and ultrasound systems are already used in neurosurgery, so it does not add more complexity to the surgical procedure. We have integrated an optical tracking device in the microscope and an augmented reality overlay system with which we avoid the need to look away from the scene, providing correctly aligned surgical images with sub-millimeter accuracy. In addition to the standard CT and 3D views, we are able to track an ultrasound probe, and using a previous calibration and registration of the imaging, the image obtained is correctly projected to the overlay system, so the surgeon can always localize the target and verify the effects of the intervention. Several tests of the system have been already performed to evaluate the accuracy, and clinical experiments are currently in progress in order to validate the clinical usefulness of the system.
Resumo:
Computer assisted orthopaedic surgery (CAOS) technology has recently been introduced to overcome problems resulting from acetabular component malpositioning in total hip arthroplasty. Available navigation modules can conceptually be categorized as computer tomography (CT) based, fluoroscopy based, or image-free. The current study presents a comprehensive accuracy analysis on the computer assisted placement accuracy of acetabular cups. It combines analyses using mathematical approaches, in vitro testing environments, and an in vivo clinical trial. A hybrid navigation approach combining image-free with fluoroscopic technology was chosen as the best compromise to CT-based systems. It introduces pointer-based digitization for easily assessable points and bi-planar fluoroscopy for deep-seated landmarks. From the in vitro data maximum deviations were found to be 3.6 degrees for inclination and 3.8 degrees for anteversion relative to a pre-defined test position. The maximum difference between intraoperatively calculated cup inclination and anteversion with the postoperatively measured position was 4 degrees and 5 degrees, respectively. These data coincide with worst cases scenario predictions applying a statistical simulation model. The proper use of navigation technology can reduce variability of cup placement well within the surgical safe zone. Surgeons have to concentrate on a variety of error sources during the procedure, which may explain the reported strong learning curves for CAOS technologies.
Resumo:
A patient-specific surface model of the proximal femur plays an important role in planning and supporting various computer-assisted surgical procedures including total hip replacement, hip resurfacing, and osteotomy of the proximal femur. The common approach to derive 3D models of the proximal femur is to use imaging techniques such as computed tomography (CT) or magnetic resonance imaging (MRI). However, the high logistic effort, the extra radiation (CT-imaging), and the large quantity of data to be acquired and processed make them less functional. In this paper, we present an integrated approach using a multi-level point distribution model (ML-PDM) to reconstruct a patient-specific model of the proximal femur from intra-operatively available sparse data. Results of experiments performed on dry cadaveric bones using dozens of 3D points are presented, as well as experiments using a limited number of 2D X-ray images, which demonstrate promising accuracy of the present approach.
Resumo:
This paper proposes methods to circumvent the need to attach physical markers to bones for anatomical referencing in computer-assisted orthopedic surgery. Using ultrasound, a bone could be non-invasively referenced, and so the problem is formulated as the need for dynamic registration. A method for correspondence establishment is presented, and the matching step is based on three least-squares algorithms: two that are typically used in registration methods such as ICP, and the third is a form of the Unscented Kalman filter that was adapted to work in this context. A simulation was developed in order to reliably evaluate and compare the dynamic registration methods
Resumo:
This paper addresses the problem of estimating postoperative cup alignment from single standard X-ray radiograph with gonadal shielding. The widely used procedure of evaluation of cup orientation following total hip arthroplasty using single standard anteroposterior radiograph is known inaccurate, largely due to the wide variability in individual pelvic position relative to X-ray plate. 2D-3D image registration methods have been introduced to estimate the rigid transformation between a preoperative CT volume and postoperative radiograph(s) for an accurate estimation of the postoperative cup alignment relative to an anatomical reference extracted from the CT data. However, these methods require either multiple radiographs or a radiograph-specific calibration, both of which are not avaiable for most retrospective studies. Furthermore, these methods were only evaluated on X-ray radiograph(s) without gonadal shielding. In this paper, we propose to use a hybrid 2D-3D registration scheme combining an iterative landmark-to-ray registration with a 2D-3D intensity-based registration to estimate the rigid transfromation for a precise estimation of cup alignment. Quantitative and qualitative results evaluated on clinical and cadaveric datasets are given which indicate the validity of our approach.
Resumo:
A CT-based method ("HipMotion") for the noninvasive three-dimensional assessment of femoroacetabular impingement (FAI) was developed, validated, and applied in a clinical pilot study. The method allows for the anatomically based calculation of hip range of motion (ROM), the exact location of the impingement zone, and the simulation of quantified surgical maneuvers for FAI. The accuracy of HipMotion was 0.7 +/- 3.1 degrees in a plastic bone setup and -5.0 +/- 5.6 degrees in a cadaver setup. Reliability and reproducibility were excellent [intraclass correlation coefficient (ICC) > 0.87] for all measures except external rotation (ICC = 0.48). The normal ROM was determined from a cohort of 150 patients and was compared to 31 consecutive hips with FAI. Patients with FAI had a significantly decreased flexion, internal rotation, and abduction in comparison to normal hips (p < 0.001). Normal hip flexion and internal rotation are generally overestimated in a number of orthopedic textbooks. HipMotion is a useful tool for further assessment of impinging hips and for appropriate planning of the necessary amount of surgical intervention, which represents the basis for future computer-assisted treatment of FAI with less invasive surgical approaches, such as hip arthroscopy.