871 resultados para Classifier Generalization Ability
Resumo:
The PM3 semiempirical quantum-mechanical method was found to systematically describe intermolecular hydrogen bonding in small polar molecules. PM3 shows charge transfer from the donor to acceptor molecules on the order of 0.02-0.06 units of charge when strong hydrogen bonds are formed. The PM3 method is predictive; calculated hydrogen bond energies with an absolute magnitude greater than 2 kcal mol-' suggest that the global minimum is a hydrogen bonded complex; absolute energies less than 2 kcal mol-' imply that other van der Waals complexes are more stable. The geometries of the PM3 hydrogen bonded complexes agree with high-resolution spectroscopic observations, gas electron diffraction data, and high-level ab initio calculations. The main limitations in the PM3 method are the underestimation of hydrogen bond lengths by 0.1-0.2 for some systems and the underestimation of reliable experimental hydrogen bond energies by approximately 1-2 kcal mol-l. The PM3 method predicts that ammonia is a good hydrogen bond acceptor and a poor hydrogen donor when interacting with neutral molecules. Electronegativity differences between F, N, and 0 predict that donor strength follows the order F > 0 > N and acceptor strength follows the order N > 0 > F. In the calculations presented in this article, the PM3 method mirrors these electronegativity differences, predicting the F-H- - -N bond to be the strongest and the N-H- - -F bond the weakest. It appears that the PM3 Hamiltonian is able to model hydrogen bonding because of the reduction of two-center repulsive forces brought about by the parameterization of the Gaussian core-core interactions. The ability of the PM3 method to model intermolecular hydrogen bonding means reasonably accurate quantum-mechanical calculations can be applied to small biologic systems.
Resumo:
The Estimation of Physiologic Ability and Surgical Stress score was designed to predict postoperative morbidity and mortality in general surgery. Our study aims to evaluate its use and accuracy in estimating postoperative outcome after elective pancreatic surgery.
Resumo:
The impact of interictal epileptic activity (IEA) on driving is a rarely investigated issue. We analyzed the impact of IEA on reaction time in a pilot study. Reactions to simple visual stimuli (light flash) in the Flash test or complex visual stimuli (obstacle on a road) in a modified car driving computer game, the Steer Clear, were measured during IEA bursts and unremarkable electroencephalography (EEG) periods. Individual epilepsy patients showed slower reaction times (RTs) during generalized IEA compared to RTs during unremarkable EEG periods. RT differences were approximately 300 ms (p < 0.001) in the Flash test and approximately 200 ms (p < 0.001) in the Steer Clear. Prior work suggested that RT differences >100 ms may become clinically relevant. This occurred in 40% of patients in the Flash test and in up to 50% in the Steer Clear. When RT were pooled, mean RT differences were 157 ms in the Flash test (p < 0.0001) and 116 ms in the Steer Clear (p < 0.0001). Generalized IEA of short duration seems to impair brain function, that is, the ability to react. The reaction-time EEG could be used routinely to assess driving ability.
Resumo:
Low back pain is associated with plasticity changes and central hypersensitivity in a subset of patients. We performed a case-control study to explore the discriminative ability of different quantitative sensory tests in distinguishing between 40 cases with chronic low back pain and 300 pain-free controls, and to rank these tests according to the extent of their association with chronic pain. Gender, age, height, weight, body mass index, and psychological measures were recorded as potential confounders. We used 26 quantitative sensory tests, including different modalities of pressure, heat, cold, and electrical stimulation. As measures of discrimination, we estimated receiver operating characteristics (ROC) and likelihood ratios. Six tests seemed useful (in order of their discriminative ability): (1) pressure pain detection threshold at the site of most severe pain (fitted area under the ROC, 0.87), (2) single electrical stimulation pain detection threshold (0.87), (3) single electrical stimulation reflex threshold (0.83), (4) pressure pain tolerance threshold at the site of most severe pain (0.81), (5) pressure pain detection threshold at suprascapular region (0.80), and (6) temporal summation pain threshold (0.80). Pressure and electrical pain modalities seemed most promising and may be used for diagnosis of pain hypersensitivity and potentially for identifying individuals at risk of developing chronic low back pain over time.
Resumo:
Pavlovian fear conditioning, a simple form of associative learning, is thought to involve the induction of associative, NMDA receptor-dependent long-term potentiation (LTP) in the lateral amygdala. Using a combined genetic and electrophysiological approach, we show here that lack of a specific GABA(B) receptor subtype, GABA(B(1a,2)), unmasks a nonassociative, NMDA receptor-independent form of presynaptic LTP at cortico-amygdala afferents. Moreover, the level of presynaptic GABA(B(1a,2)) receptor activation, and hence the balance between associative and nonassociative forms of LTP, can be dynamically modulated by local inhibitory activity. At the behavioral level, genetic loss of GABA(B(1a)) results in a generalization of conditioned fear to nonconditioned stimuli. Our findings indicate that presynaptic inhibition through GABA(B(1a,2)) receptors serves as an activity-dependent constraint on the induction of homosynaptic plasticity, which may be important to prevent the generalization of conditioned fear.
Resumo:
OBJECTIVES AND METHODS: This study investigated the sealing ability of a current available unfilled fissure sealant applied over sound (n=80), artificially created (n=80) and naturally carious fissures (n=80) under different humidity conditions (90+/-2 and 45+/-2% relative humidity) and etching times (40 and 60s). All samples were submitted to 5000 thermal cycles and examined by light microscopy after sectioning. Microleakage, penetration ability, fissure type, fissure entrance angle, sealant occlusal length, caries location and caries depth were assessed. RESULTS: The significantly longer sealant occlusal length and larger entrance angle exhibited by shallow fissures, contributed to their higher microleakage and smaller amounts of unfilled areas compared to deep fissures. Sealant microleakage was significantly influenced by the condition of the enamel (sound, artificial and natural caries) and the caries location in the fissures, but not by enamel caries depth (D1 and D2), etching time, or humidity condition. Natural caries exhibited significantly higher microleakage than sound or artificially created carious fissures. CONCLUSIONS: Based on the results of this study, it can be concluded that location of caries in the fissure rather than its depth should be taken into account when applying a fissure sealant. When the borders of the fissure sealant are on carious enamel, a significantly higher microleakage must be expected. The artificial caries model was not a suitable method to assess the behavior of natural fissure caries.