691 resultados para Carbó activat


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon dioxide, ammonia, and reactive phosphate in the interstitial water of three sediment cores of the West African continental margin result from oxidation of sedimentary organic matter by bacterial sulfate reduction. The proposed model is a modification of one initially suggested by Richards (1965) for processes in anoxic waters: (CH2O)106 (NH3)8 (H3PO4) (0.7-0.2) + 53 SO4**2- =106 CO2 + 106 H20 + 8 NH3 + (0.7 - 0.2) H3PO4 + 53 S**2- The amount of reduced interstitial sulfate, the carbon-to-nitrogen-to-phosphorus atomic ratio of the sedimentary organic matter, as well as small amounts of carbon dioxide, which precipitated as interstitial calcium carbonate, are included in the general oxidation-reduction reaction. Preferential loss of nitrogen and phosphorus from organic matter close to the surface was recorded in both the interstitial water and sediment composition. It appeared that in deeper sections of the core organic carbon compounds were oxidized which were probably in an even lower oxidation state than that indicated by the proposed model. An estimated 2 % of the amount of organic matter still present was oxidized after it became incorporated into the sediment; whereas sulfide sulfur contents indicate that a much larger percentage (15-20%) seemed to have been subject to bacterial oxidation during the Pleistocene period, when a very thin oxidizing layer on the sediment allowed the above decomposition process to start relatively early favoured by almost fresh organic matter, and by almost unrestricted exchange of sulfate with the overlying water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable oxygen and carbon isotope and sedimentological-paleontological investigations supported by accelerator mass spectrometry 14C datings were carried out on cores from north of 85°N in the eastern central Arctic Ocean. Significant changes in accumulation rates, provenance of ice-rafted debris (IRD), and planktic productivity over the past 80,000 years are documented. During peak glacials, i.e., oxygen isotope stages 4 and 2, the Arctic Ocean was covered by sea ice with decreased seasonal variation, limiting planktic productivity and bulk sedimentation rates. In early stage 3 and during Termination I, major deglaciations of the circum-Arctic regions caused lowered salinities and poor oxygenation of central Arctic surface waters. A meltwater spike and an associated IRD peak dated to ~14-12 14C ka can be traced over the southern Eurasian Basin of the Arctic Ocean. This event was associated with the early and rapid deglaciation of the marine-based Barents Sea Ice Sheet. A separate Termination Ib meltwater event is most conspicuous in the central Arctic and is associated with characteristic dolomitic carbonate IRD. This lithology suggests an origin of glacial ice from northern Canada and northern Greenland where lower Paleozoic platform carbonates crop extensively out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elemental composition, functional groups, and molecular mass distribution were determined in humic acids from the Western Pacific abyssal and coastal bottom sediments. Humic acid structure was studied by oxidative degradation with alkaline nitrobenzene and potassium permanganate, p-coumaric, guaiacilic, and syringilic structural units typical for lignin of terrestrial plants were identified in humic acids by chromatographic analysis of oxidation products. Polysubstituted and polycondensed aromatic systems with minor proportion of aliphatic structures were basic structural units of humic acids in abyssal sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The clay mineralogical composition of a 552 cm long sediment core from Lake Terrasovoje in Amery Oasis, East Antarctica, was analysed and compared with that in surface sediments from other locations in the vicinity. The lower part of the sediment core is formed by sub- and proglacial sediments with a dominance of smectite and illite, and lower amounts of kaolinite and chlorite. The upper part of the core is deposited after 12 500 cal yr bp and mainly composed of illite and kaolinite, with low amounts of smectite and chlorite, such as found in samples from rock outcrops and covering sediments throughout Amery Oasis. The clay composition in the lower section of core Lz1005 suggest that the basin of Lake Terrasovoje was filled by a 150-200 m thickened Nemesis Glacier prior to 12 500 cal yr bp rather than by local ice caps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-resolution study of palaeoenvironmental changes through the late Younger Dryas and early Holocene in the Skagerrak, the eastern North Atlantic, is based on multi-proxy analyses of core MD99-2286 combined with palaeo-water depth modelling for the area. The late Younger Dryas was characterized by a cold ice-distal benthic foraminiferal fauna. After the transition to the Preboreal (c. 11 650 cal. a BP) this fauna was replaced by a Cassidulina neoteretis dominated fauna, indicating the influence of chilled Atlantic Water at the sea floor. Persisting relatively cold bottom-water conditions until c. 10 300 cal. a BP are presumably a result of an outflow of glacial meltwater from the Baltic area across south-central Sweden, which develops a strong stratification of the water column at MD99-2286. A short-term peak in the C/N ratio at c. 10 200 cal. a BP is suggested to indicate input of terrestrial material, which may represent the drainage of an ice-dammed lake in southern Norway, the Glomma event. After the last drainage route across south-central Sweden closed, c. 10 300 cal. a BP, the meltwater influence diminished, and the Skagerrak resembled a fjord with stable inflow of waters from the North Atlantic through the Norwegian Channel and a gradual increase in boreal species. Full interglacial conditions were established at the sea floor from c. 9250 cal. a BP. Subsequent warm stable conditions were interrupted by a short-term cooling around 8300-8200 cal. a BP, representing the 8.2 ka event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The circulation and internal structure of the oceans exert a strong influence on Earth's climate because they control latitudinal heat transport and the segregation of carbon between the atmosphere and the abyss (Sigman et al., 2010, doi:10.1038/nature09149). Circulation change, particularly in the Atlantic Ocean, is widely suggested (Bartoli et al., 2005, doi:10.1016/j.epsl.2005.06.020; Haug and Tiedemann, 1998, doi:10.1038/31447; Woodard et al., 2014, doi:10.1126/science.1255586; McKay et al., 2012, doi:10.1073/pnas.1112248109) to have been instrumental in the intensification of Northern Hemisphere glaciation when large ice sheets first developed on North America and Eurasia during the late Pliocene, approximately 2.7 million years ago (Bailey et al., 2013, doi:10.1016/j.quascirev.2013.06.004). Yet the mechanistic link and cause/effect relationship between ocean circulation and glaciation are debated. Here we present new records of North Atlantic Ocean structure using the carbon and neodymium isotopic composition of marine sediments recording deep water for both the Last Glacial to Holocene (35-5 thousand years ago) and the late Pliocene to earliest Pleistocene (3.3-2.4 million years ago). Our data show no secular change. Instead we document major southern-sourced water incursions into the deep North Atlantic during prominent glacials from 2.7 million years ago. Our results suggest that Atlantic circulation acts as a positive feedback rather than as an underlying cause of late Pliocene Northern Hemisphere glaciation. We propose that, once surface Southern Ocean stratification (Sigman, et al., 2004, doi:10.1038/nature02357) and/or extensive sea-ice cover (McKay et al., 2012, doi:10.1073/pnas.1112248109) was established, cold-stage expansions of southern-sourced water such as those documented here enhanced carbon dioxide storage in the deep ocean, helping to increase the amplitude of glacial cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the Paleocene-Eocene Thermal Maximum (PETM) about 56 million years ago, thousands of petagrams of carbon were released into the atmosphere and ocean in just a few thousand years, followed by a gradual sequestration over approximately 200,000 years. If silicate weathering is one of the key negative feedbacks that removed this carbon, a period of seawater calcium carbonate saturation greater than pre-event levels is expected during the event's recovery phase. In marine sediments, this should be recorded as a temporary deepening of the depth below which no calcite is preserved - the calcite compensation depth (CCD). Previous and new sedimentary records from sites that were above the pre-PETM calcite compensation depth show enhanced carbonate accumulation following the PETM. A new record from an abyssal site in the North Atlantic that lay below the pre-PETM calcite compensation depth shows a period of carbonate preservation beginning about 70,000 years after the onset of the PETM, providing the first direct evidence for an over-deepening of the calcite compensation depth. This record confirms an overshoot in ocean carbonate saturation during the PETM recovery. Simulations with two earth system models support scenarios for the PETM that involve both a large initial carbon release followed by prolonged low-level emissions, consistent with the timing of CCD deepening in our record. Our findings indicate that sequestration of these carbon emissions was most likely the result of both globally enhanced calcite burial above the calcite compensation depth and, at least in the North Atlantic, by a temporary over-deepening of the calcite compensation depth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sandfraction of the sediment was analysed in five cores, taken from 65 m water depth in the central and eastern part of the Persian Gulf. The holocene marls are underlayn by aragonite muds, which are probably 10-11,000 years old. 1. The cores could be subdivided into coarse grained and fine grained layers. Sorting is demonstrated by the following criteria: With increasing median values of the sandfraction - the fine grained fraction decreases within each core; - the median of each biogenic component, benthonic as well as planktonic, increases; - the median of the relict sediment, which in core 1179 was carried upward into the marl by bioturbation, increases; - the percentages of pelecypods, gastropods, decapods and serpulid worms in the sandfraction increase, the percentages of foraminifera and ostracods decrease; - the ratios of pelecypods to foraminifera and of decapods to ostracods increase; - the ratios of benthonic molluscs to planktonic molluscs (pteropods) and of benthonic foraminifera to planktonic foraminifera increase (except in core 1056 and 1179); - the ratio of planktonic molluscs (pteropods) to planktonic foraminifera increases; - the globigerinas without orbulinas increase, the orbulinas decrease in core 1056. Different settling velocities of these biogenic particles help in better understanding the results : the settling velocities, hence the equivalent hydrodynamic diameters, of orbulinas are smaller than those of other globigerinas, those of planktonic foraminifera are smaller than those of planktonic molluscs, those of planktonic molluscs are smaller than those of benthonic molluscs, those of pelecypods are smaller than those of gastropods. Bioturbation could not entirely distroy this "grain-size-stratification". Sorting has been stronger in the coarse layers than in the finer ones. As a cause variations in the supply of terrigenous material at constant strength of tidal currents is suggested. When much terrigenous material is supplied (large contents of fine grained fraction) the sedimentation rates are high: the respective sediment surface is soon covered and removed from the influence of tidal currents. When, however, the supply of terrigenous material is small, more sandy material is taken away in all locations within the influence of terrigenous supply. Thus the biogenic particles in the sediment do not only reflect the organic production, but also the influence of currents. 2. There is no parameter present in all cores that is independently variable from grain size and can be used for stratigraphic correlation. The two cores from the Strait of Hormus were correlated by their sequences of coarse and fine grained layers. 3. The sedimentation rates of terrigenous material, of total planktonic and benthonic organisms and of molluscs, foraminifera, echinoids and ophiuroids are shown in table 1 (total sediment 6.3-75.5 cm/1000 yr, biogenic carbonate 1.9-3.6 cm/1000 yr). The sedimentation rates of benthonic organisms are nearly the same in the cores of the Strait of Hormus, whereas near the Central Swell they are smaller. In the upper parts of the two cores of the Strait of Hormus sedimentation rates are higher than in the deeper parts, where higher median values point to stronger reworking. 4. The sequence of coarse and fine grained intervals in the two cores of the Hormus Strait, attributed to variations in climate, as well as the increase of terrigenous supply from the deeper to the upper parts of the cores, agrees with the descriptions in the literature of the post Pleistocene climate as becoming more humid. The rise of sea level is sedimentologically not measurable in the marly sediments - except perhaps for the higher content of echinoids in the lower part of core 1056. These may be attributed to the influence of a migrating wave-base. 5. The late Pleistocene aragonite mud is very fine grained (> 50%< 2 p) and poor in fossils (0.5-1.8%) biogenic particles of total sediment. The sand fraction consists almost entirely of white clumps, c. 0.1 mm in diameter (1177), composed of aragonite needles and of detrital minerals with the same size (1201). The argonite mud was probably not formed in situ, because the water depth at time of formation was at most 35 m at least 12 m. The sorting of the sediment (predominance of the fine grained sand), the absence of larger biogenic components and of pellets, c. 0.2-0.5 mm in diameter, which are typical for Recent and Pleistocene locations of aragonite formation, as well as the sedimentological conditions near the sampling points, indicate rather a transport of aragonite mud from an area of formation in very shallow waters. Sorting as well as lenticular fabric in core 1201 point to sedimentation within the influence of currents. During alternating sedimentation - and reworking processes the aragonitic matrix was separated from the silt - and sand-sized minerals. The lenses grade into touches because of bioturbation. 6. In core 1056 D2 from Hormus Bay the percentages of organic carbon, total nitrogen and total carbonate were determined. With increasing amounts of smaller grain sizes the content of organic matter increases, whereas the amount of carbonate decreases. The amounts of organic carbon and of nitrogen decrease with increasing depth, probably due to early-diagenetic decomposition processes. Most of the total nitrogen is of organic origin, only about 10% may well be inorganically fixed as ammonium-nitrogen. In the upper part of the core the C/N-ratio increases with increasing depth. This may be connected with a stronger decomposition of nitrogen-containing organic compounds. The general decrease of the C/N-ratios in the lower part of the core may be explained by the relative increase of inorganically fixed ammonium-nitrogen with decreasing content of organic matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biogenic components of sediment accumulated at high rates beneath frontal zones of the Indian and Pacific oceans during the late Miocene and early Pliocene. The delta13C of bulk and foraminiferal carbonate also decreased during this time interval. Although the two observations may be causally linked, and signify a major perturbation in global biogeochemical cycling, no site beneath a frontal zone has independent records of export production and delta13C on multiple carbonate phases across the critical interval of interest. Deep Sea Drilling Project (DSDP) site 590 lies beneath the Tasman Front (TF), an eddy-generating jetstream in the southwest Pacific Ocean. To complement previous delta13C records of planktic and benthic foraminifera at this location, late Neogene records of CaCO3 mass accumulation rate (MAR), Ca/Ti, Ba/Ti, Al/Ti, and of bulk carbonate and foraminiferal delta13C were constructed at site 590. The delta13C records include bulk sediment, bulk sediment fractions (<63 µm and 5-25 µm), and the planktic foraminifera Globigerina bulloides, Globigerinoides sacculifer (with and without sac), and Orbulina universa. Using current time scales, CaCO3 MARs, Ca/Ti, Al/Ti and Ba/Ti ratios are two to three times higher in upper Miocene and lower Pliocene sediment relative to overlying and underlying units. A significant decrease also occurs in all delta13C records. All evidence indicates that enhanced export production - the 'biogenic bloom' - extended to the southwest Pacific Ocean between ca. 9 and 3.8 Ma, and this phenomenon is coupled with changes in delta13C - the 'Chron C3AR carbon shift'. However, CaCO3 MARs peak ca. 5 Ma whereas elemental ratios are highest ca. 6.5 Ma; foraminiferal delta13C starts to decrease ca. 8 Ma whereas bulk carbonate delta13C begins to drop ca. 5.6 Ma. Temporal discrepancies between the records can be explained by changes in the upwelling regime at the TF, perhaps signifying a link between changes in ocean-atmosphere circulation change and widespread primary productivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable isotopic records across the Cretaceous/Paleogene (K/P) boundary in Maud Rise Holes 689B and 690C indicate that significant climatic changes occurred during the latest Cretaceous, beginning approximately 500 k.y. prior to the mass extinction event and the enrichment of iridium at the K/P boundary (66.4 Ma). An oxygen isotopic decrease of ~0.7 per mil - ~1.0 per mil is recorded in the Late Cretaceous planktonic and benthic foraminifers between 66.9 and 66.6 Ma. The negative isotope excursion was followed by a positive excursion of similar magnitude between 66.6 Ma (latest Cretaceous) and ~66.3 Ma (earliest Paleocene). No other isotopic excursions of this magnitude are recorded in the planktonic and benthic microfossil records 1.0 m.y prior to, and for 2.0 m.y following the mass extinction event at the K/P boundary. The magnitude and duration of these isotopic excursions were similar to those at the Paleocene/Eocene and Eocene/Oligocene boundaries. A major d13C excursion occurred 200 k.y. prior to the boundary, involving a positive shift in planktonic and benthic d13C of ~0.5 per mil - 0.75 per mil. Similar changes observed in other deep-sea sequences indicate that this reflected a global change in d13C of the oceanic total dissolved carbon (TDC) reservoir. The magnitude of this inferred carbon reservoir change and its association with high latitude surface-water temperature changes recorded in the d18O records implies that it was linked to global climate change through feedback loops in the carbon cycle. At the K/P boundary, the surface-to-deep water d13C gradient is reduced by approximately 0.6 per mil - ~0.2 per mil. However, unlike sequences elsewhere, the planktonic-benthic d13C gradient (Delta d13C) was not eliminated in the Antarctic. The surface-to-deep water gradient was re-established gradually during the 400 k.y. following the mass extinction. Full recovery of the Delta d13C occurred by ~60.0 Ma. In addition to the reduced vertical d13C gradient across the K/P boundary, there was a negative excursion in both planktonic and benthic d13C beginning approximately 100 k.y. after the boundary (66.3 Ma). This excursion resulted in benthic d13C values in the early Paleogene that were similar to those in the pre-K/P boundary intervals. This negative shift appears to reflect a change in the d13C of the oceanic TDC reservoir shift that may have resulted from reduced carbon burial and/or increased carbon flux to the oceans. Any model that attempts to explain the demise of the oceanic plankton at the end of the Cretaceous should consider the oceanic environmental changes that were occurring prior to the massive extinction event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tesis de la Universidad Central (Madrid), Facultad de Farmacia, leída el 27-06-1868.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CO2/pH perturbation experiments were carried out under two different pCO2 levels (39.3 and 101.3 Pa) to evaluate effects of CO2-induced ocean acidification on the marine diatom Phaeodactylum tricornutum. After acclimation (>20 generations) to ambient and elevated CO2 conditions (with corresponding pH values of 8.15 and 7.80, respectively), growth and photosynthetic carbon fixation rates of high CO2 grown cells were enhanced by 5% and 12%, respectively, and dark respiration stimulated by 34% compared to cells grown at ambient CO2. The half saturation constant (Km) for carbon fixation (dissolved inorganic carbon, DIC) increased by 20% under the low pH and high CO2 condition, reflecting a decreased affinity for HCO3- or/and CO2 and down-regulated carbon concentrating mechanism (CCM). In the high CO2 grown cells, the electron transport rate from photosystem II (PSII) was photoinhibited to a greater extent at high levels of photosynthetically active radiation, while non-photochemical quenching was reduced compared to low CO2 grown cells. This was probably due to the down-regulation of CCM, which serves as a sink for excessive energy. The balance between these positive and negative effects on diatom productivity will be a key factor in determining the net effect of rising atmospheric CO2 on ocean primary production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-resolution multiparameter stratigraphy allows the identification of late Quaternary glacial and interglacial cycles in a central Arctic Ocean sediment core. Distinct sandy layers in the upper part of the otherwise fine-grained sediment core from the Lomonosov Ridge (lat 87.5°N) correlate to four major glacials since ca. 0.7 Ma. The composition of these ice-rafted terrigenous sediments points to a glaciated northern Siberia as the main source. In contrast, lithic carbonates derived from North America are also present in older sediments and indicate a northern North American glaciation since at least 2.8 Ma. We conclude that large-scale northern Siberian glaciation began much later than other Northern Hemisphere ice sheets.