965 resultados para COLORIMETRIC ASSAY
Resumo:
Tuberculosis due to Mycobacterium bovis in captive Cervidae was identified as an important disease in the United States in 1990 and prompted the addition of captive Cervidae to the USDA Uniform Methods and Rules for eradication of bovine tuberculosis. As well, M. bovis infection was identified in free-ranging white-tailed deer in northeast Michigan in 1995. Tuberculosis in both captive and free-ranging Cervidae represents a serious challenge to the eradication of M. bovis infection from the United States. Currently, the only approved antemortem tests for tuberculosis in Cervidae are the intradermal tuberculin skin test and the blood tuberculosis test (BTB). At present, the BTB is not available in North America. Tuberculin skin testing of Cervidae is time-consuming and involves repeated animal handling and risk of injury to animals and humans. This study evaluated the potential of a new blood-based assay for tuberculosis in Cervidae that would decrease animal handling, stress, and losses due to injury. In addition, a blood-based assay could provide a more rapid diagnosis. Twenty 6–9-month-old white-tailed deer, male and female, were experimentally inoculated by instillation of 300 colony-forming units of M. bovis in the tonsillar crypts. Seven, age-matched uninfected deer served as controls. Blood was collected on days 90, 126, 158, 180, 210, 238, 263, and 307 after inoculation and was analyzed for the production of interferon-γ (IFN-γ) in response to incubation with M. bovis purified protein derivative (PPDb), M. avium PPDa, pokeweed mitogen (PWM), or media alone. Production of IFN-g in response to PPDb was significantly greater (P < 0.05) at all time points in samples from M. bovis–infected deer as compared with uninfected control deer, whereas IFN-γ production to PWM did not differ significantly between infected and control deer. Measurement of IFN-γ production to PPDb may serve as a useful assay for the antemortem diagnosis of tuberculosis in Cervidae.
Resumo:
The objective of the present study was to compare the performance of three serological tests for diagnosis of Brucella abortus infections in buffaloes (Bubalus bubalis). Serum samples collected from 696 adult females were submitted to the competitive enzyme-linked immunosorbent assay (ELISAC), (I-ELISA), fluorescence polarization test (FPA), 2-mercaptoethanol test (2-ME) and complement fixation test (CFT). The gold standard was the combination of CFT and 2-ME, considering as positive the reactors in both CFT and 2-ME, and as negative those non-reactors. ROC analyses were done for C-ELISA, I-ELISA and FPA and the Kappa agreement index were also calculated. The best combinations of relative sensitivity (SEr) and relative specificity (SPr) and Kappa were given by C-ELISA (96.9%, 99.1%, and 0.932, respectively) and FPA (92.2%, 97.6 and 0.836, respectively). The C-ELISA and FPA were the most promising confirmatory tests for the serological diagnosis of brucellosis in buffaloes, and for these tests, cut-off values for buffaloes may be the same as those used for bovines.
Resumo:
Background: Cryptococcus neoformans causes meningitis and disseminated infection in healthy individuals, but more commonly in hosts with defective immune responses. Cell-mediated immunity is an important component of the immune response to a great variety of infections, including yeast infections. We aimed to evaluate a specific lymphocyte transformation assay to Cryptococcus neoformans in order to identify immunodeficiency associated to neurocryptococcosis (NCC) as primary cause of the mycosis. Methods: Healthy volunteers, poultry growers, and HIV-seronegative patients with neurocryptococcosis were tested for cellular immune response. Cryptococcal meningitis was diagnosed by India ink staining of cerebrospinal fluid and cryptococcal antigen test (Immunomycol-Inc, SP, Brazil). Isolated peripheral blood mononuclear cells were stimulated with C. neoformans antigen, C. albicans antigen, and pokeweed mitogen. The amount of H-3-thymidine incorporated was assessed, and the results were expressed as stimulation index (SI) and log SI, sensitivity, specificity, and cut-off value (receiver operating characteristics curve). We applied unpaired Student t tests to compare data and considered significant differences for p<0.05. Results: The lymphotoxin alpha showed a low capacity with all the stimuli for classifying patients as responders and non-responders. Lymphotoxin alpha stimulated by heated-killed antigen from patients with neurocryptococcosis was not affected by TCD4+ cell count, and the intensity of response did not correlate with the clinical evolution of neurocryptococcosis. Conclusion: Response to lymphocyte transformation assay should be analyzed based on a normal range and using more than one stimulator. The use of a cut-off value to classify patients with neurocryptococcosis is inadequate. Statistical analysis should be based on the log transformation of SI. A more purified antigen for evaluating specific response to C. neoformans is needed.
Resumo:
This work aims to evaluate the cytocompatibility of injectable and moldable restorative biomaterials based on granules of dense or porous biphasic calcium phosphates (BCPs) with human primary mesenchymal cells, in order to validate them as tools for stem cell-induced bone regeneration. Porous hydroxyapatite (HA) and HA/beta-tricalcium phosphate (beta-TCP) (60: 40) granules were obtained by the addition of wax spheres and pressing at 20 MPa, while dense materials were compacted by pressing at 100 MPa, followed by thermal treatment (1100 degrees C), grinding, and sieving. Extracts were prepared by 24-h incubation of granules on culture media, with subsequent exposition of human primary mesenchymal cells. Three different cell viability parameters were evaluated on the same samples. Scanning electron microscopy analysis of the granules revealed distinct dense and porous surfaces. After cell exposition to extracts, no significant differences on mitochondrial activity (2,3-bis(2-methoxy-4-nitro-5-sulfophenly)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide) or cell density (Crystal Violet Dye Elution) were observed among groups. However, Neutral Red assay revealed that dense materials extracts induced lower levels of total viable cells to porous HA/beta-TCP (P < 0.01). Calcium ion content was also significantly lower on the extracts of dense samples. Porogenic treatments on BCP composites do not affect cytocompatibility, as measured by three different parameters, indicating that these ceramics are well suited for further studies on future bioengineering applications.
Resumo:
The goals of this study are to evaluate in vitro compatibility of magnetic nanomaterials and their therapeutic potential against cancer cells. Highly stable ionic magnetic fluid sample (maghemite, gamma-Fe2O3) and Selol were incorporated into polymeric nanocapsules by nanoprecipitation method. The cytotoxic effect of Selol-loaded magnetic nanocapsules was assessed on murine melanoma (B16-F10) and oral squamous cell carcinoma (OSCC) cell lines following AC magnetic field application. The influence of different nanocapsules on cell viability was investigated by colorimetric MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. In the absence of AC magnetic field Selol-loaded magnetic nanocapsules, containing 100 mu g/mL Selol plus 5 x 10(12) particle/mL, showed antitumoral activity of about 50% on B16-F10 melanoma cells while OSCC carcinoma cells demonstrated drug resistance at all concentrations of Selol and magnetic fluid (range of 100-500 mu g/mL Selol and 5 x 10(12) -2.5 x 10(13) particle/mL). On the other hand, under AC applied fields (1 MHz and 40 Oe amplitude) B16-F10 cell viability was reduced down to 40.5% (+/- 3.33) at the highest concentration of nanoencapsulated Selol. The major effect, however, was observed on OSCC cells since the cell viability drops down to about 33.3% (+/- 0.38) under application of AC magnetic field. These findings clearly indicate that the Selol-loaded magnetic nanocapsules present different toxic effects on neoplastic cell lines. Further, the cytotoxic effect was maximized under AC magnetic field application on OSCC, which emphasizes the effectiveness of the magnetohyperthermia approach. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3680541]
Resumo:
Fast-track Diagnostics respiratory pathogens (FTDRP) multiplex real-time RT-PCR assay was compared with in-house singleplex real-time RT-PCR assays for detection of 16 common respiratory viruses. The FTDRP assay correctly identified 26 diverse respiratory virus strains, 35 of 41 (85%) external quality assessment samples spiked with cultured virus and 232 of 263 (88%) archived respiratory specimens that tested positive for respiratory viruses by in-house assays. Of 308 prospectively tested respiratory specimens selected from children hospitalized with acute respiratory illness, 270 (87.7%) and 265 (86%) were positive by FTDRP and in-house assays for one or more viruses, respectively, with combined test results showing good concordance (K=0.812, 95% CI = 0.786-0.838). Individual FTDRP assays for adenovirus, respiratory syncytial virus and rhinovirus showed the lowest comparative sensitivities with in-house assays, with most discrepancies occurring with specimens containing low virus loads and failed to detect some rhinovirus strains, even when abundant. The FTDRP enterovirus and human bocavirus assays appeared to be more sensitive than the in-house assays with some specimens. With the exceptions noted above, most FTDRP assays performed comparably with in-house assays for most viruses while offering enhanced throughput and easy integration by laboratories using conventional real-time PCR instrumentation. Published by Elsevier B.V.
Resumo:
Nowadays, the attainment of microsystems that integrate most of the stages involved in an analytical process has raised an enormous interest in several research fields. This approach provides experimental set-ups of increased robustness and reliability, which simplify their application to in-line and continuous biomedical and environmental monitoring. In this work, a novel, compact and autonomous microanalyzer aimed at multiwavelength colorimetric determinations is presented. It integrates the microfluidics (a three-dimensional mixer and a 25 mm length "Z-shape" optical flow-cell), a highly versatile multiwavelength optical detection system and the associated electronics for signal processing and drive, all in the same device. The flexibility provided by its design allows the microanalyzer to be operated either in single fixed mode to provide a dedicated photometer or in multiple wavelength mode to obtain discrete pseudospectra. To increase its reliability, automate its operation and allow it to work under unattended conditions, a multicommutation sub-system was developed and integrated with the experimental set-up. The device was initially evaluated in the absence of chemical reactions using four acidochromic dyes and later applied to determine some key environmental parameters such as phenol index, chromium(VI) and nitrite ions. Results were comparable with those obtained with commercial instrumentation and allowed to demonstrate the versatility of the proposed microanalyzer as an autonomous and portable device able to be applied to other analytical methodologies based on colorimetric determinations.
Resumo:
Phospholipases A(2) (PLA(2)) are key enzymes in membrane metabolism. The release of fatty acids and lysophospholipids by PLA(2) activates several intra-cellular second messenger cascades that regulate a wide variety of physiological responses. The aim of the present study is to describe a radioenzymatic assay to determine the activity of three main PLA(2) subtypes in platelets, namely extracellular calcium-dependent PLA(2) (sPLA(2)) and intracellular calcium-dependent (cPLA(2)) and calcium-independent PLA(2) (iPLA(2)). The differentiation of these distinct PLA(2) subtypes was based on the enzyme substrate preference (arachdonic acid or palmitoyl acid) and calcium concentration. Our results indicate that this new assay is feasible, precise and specific to measure the activity of the aforementioned subtypes of PLA(2). Therefore, this protocol can be used to investigate modifications of PLA(2) homeostasis in distinct biological models addressing the pathophysiology of many medical and neuropsychiatric disorders such as schizophrenia and Alzheimer's disease. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Acute lung injury is an inflammatory condition for which treatment is mainly supportive because effective therapies have not been developed. Cannabidiol, a non-psychotropic cannabinoid component of marijuana (Cannabis sativa), has potent immunosuppressive and anti-inflammatory properties. Therefore, we investigated the possible anti-inflammatory effect of cannabidiol in a murine model of acute lung injury. Analysis of total inflammatory cells and differential in bronchoalveolar lavage fluid was used to characterize leukocyte migration into the lungs; myeloperoxidase activity of lung tissue and albumin concentration in the bronchoalveolar lavage fluid were analyzed by colorimetric assays; cytokine/chemokine production in the bronchoalveolar lavage fluid was also analyzed by Cytometric Bead Arrays and Enzyme-Linked Immunosorbent Assay (ELISA). A single dose of cannabidiol (20 mg/kg) administered prior to the induction of LPS (lipopolysaccharide)-induced acute lung injury decreases leukocyte (specifically neutrophil) migration into the lungs, albumin concentration in the bronchoalveolar lavage fluid, myeloperoxidase activity in the lung tissue, and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) 1, 2, and 4 days after the induction of LPS-induced acute lung injury. Additionally, adenosine A(2A) receptor is involved in the anti-inflammatory effects of cannabidiol on LPS-induced acute lung injury because ZM241385 (4-(2[7-Amino-2-(2-furyl)[1,2,4] triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl) phenol) (a highly selective antagonist of adenosine A(2A) receptor) abrogated all of the anti-inflammatory effects of cannabidiol previously described. Thus, we show that cannabidiol has anti-inflammatory effects in a murine model of acute lung injury and that this effect is most likely associated with an increase in the extracellular adenosine offer and signaling through adenosine A(2A) receptor. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
Cryptosporidium parvum infection is very important with respect to public health, owing to foodborne and waterborne outbreaks and gastrointestinal illness in immunocompetent and immunocompromised persons. In cattle, infection with this species manifests either as a subclinical disease or with diarrheal illness, which occurs more often in the presence of other infectious agents than when alone. The aim of this study was to develop a real-time polymerase chain reaction (PCR) assay for the detection of C. parvum in calf fecal samples and to compare the results of this assay with those of the method routinely used for the diagnosis of Cryptosporidium spp., nested PCR targeting the 18S rRNA gene. Two hundred and nine fecal samples from calves ranging in age from 1 day to 6 months were examined using real-time PCR specific for the actin gene of C. parvum and by a nested PCR targeting the 18S rRNA gene of Cryptosporidium spp. Using real-time PCR detection, 73.2% (153 out of 209) of the samples were positive for C. parvum, while 56.5% (118 out of 209) of the samples were positive for Cryptosporidium spp. when the nested PCR amplification method was used for the detection. The analytical sensitivity of the real-time PCR was approximately one C. parvum oocyst. There was no significant nonspecific DNA amplification of any of the following species and genotype: Cryptosporidium andersoni, Cryptosporidium baileyi, Cryptosporidium bovis, Cryptosporidium canis, Cryptosporidium galli, Cryptosporidium ryanae, Cryptosporidium serpentis, or avian genotype II. Thus, we conclude that real-time PCR targeting the actin gene is a sensitive and specific method for the detection of C. parvum in calf fecal samples.
Resumo:
The designation of biodiesel as an environmental-friendly alternative to diesel oil has improved its commercialization and use. However, most biodiesel environmental safety studies refer to air pollution and so far there have been very few literature data about its impacts upon other biotic systems, e.g. water, and exposed organisms. Spill simulations in water were carried out with neat diesel and biodiesel and their blends aiming at assessing their genotoxic potentials should there be contaminations of water systems. The water soluble fractions (WSF) from the spill simulations were submitted to solid phase extraction with C-18 cartridge and the extracts obtained were evaluated carrying out genotoxic and mutagenic bioassays [the Salmonella assay and the in vitro MicroFlow (R) kit (Litron) assay]. Mutagenic and genotoxic effects were observed, respectively, in the Salmonella/microsome preincubation assay and the in vitro MN test carried out with the biodiesel WSF. This interesting result may be related to the presence of pollutants in biodiesel derived from the raw material source used in its production chain. The data showed that care while using biodiesel should be taken to avoid harmful effects on living organisms in cases of water pollution. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A serological follow-up study was carried out on 27 children (1–12 years old) with visceral and/or ocular toxocariasis, after treatment with thiabendazole. A total of 159 serum samples were collected in a period ranging from 22–116 months. Enzyme-linked immunosorbent assays (IgG, IgA, and IgE ELISA) were standardized, using excretory–secretory antigens obtained from the second-stage larvae of a Toxocara canis culture. The sensitivity found for the IgG, IgA, and IgE ELISA, as determined in visceral toxocariasis patients, was 100%, 47.8%, and 78.3%, respectively. Approximately 84% of the patients presented single or multiple parasitosis, as diagnosed by stool examination, yet such variables did not appear to affect the anti-Toxocara immune response. Titers of specific IgE antibody showed a significant decrease during the first year after treatment, followed by a decrease in the IgA titers in the second year, and in the IgG titers from the fourth year onwards. Sera from all patients presented high avidity IgG antibodies, indicating that they were in the chronic phase of the disease. Moreover, 1 year after treatment, the level of leukocytes, eosinophils, and anti-A isohemagglutinin in patients decreased significantly. The present data suggest that IgE antibodies plus eosinophil counts are helpful parameters for patient followup after chemotherapy.
Resumo:
The aim of this study was to assess, using the DPPH assay, the antioxidant activity of several substances that could be proposed to immediately revert the problems caused by bleaching procedures. The percentage of antioxidant activity (AA%) of 10% ascorbic acid solution (AAcidS), 10% ascorbic acid gel (AAcidG), 10% sodium ascorbate solution (SodAsS), 10% sodium ascorbate gel (SodAsG), 10% sodium bicarbonate (Bicarb), Neutralize® (NE), Desensibilize® (DES), catalase C-40 at 10 mg/mL (CAT), 10% alcohol solution of alpha-tocopherol (VitE), Listerine® (LIS), 0.12% chlorhexidine (CHX), Croton Lechleri (CL), 10 % aqueous solution of Uncaria Tomentosa (UT), artificial saliva (ArtS) and 0.05% sodium fluoride (NaF) was assessed in triplicate by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical assay. All substances exhibited antioxidant activity, except for CL. AAcidS, AAcidG and VitE exhibited the highest AA% (p<0.05). On the contrary, CHX, NE, LIS and NaF showed the lowest AA% (p<0.05). In conclusion, AAcidS, AAcidG, SodAsS, SodAsG and VitE presented the highest antioxidant activity among substances tested in this study. The DPPH assay provides an easy and rapid way to evaluate potential antioxidants.
Resumo:
Certain bacteria present on frog skin can prevent infection by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), conferring disease resistance. Previous studies have used agar-based in vitro challenge assays to screen bacteria for Bd-inhibitory activity and to identify candidates for bacterial supplementation trials. However, agar-based assays can be difficult to set up and to replicate reliably. To overcome these difficulties, we developed a semi-quantitative spectrophotometric challenge assay technique. Cell-free supernatants were prepared from filtered bacterial cultures and added to 96-well plates in replicated wells containing Bd zoospores suspended in tryptone-gelatin hydrolysate-lactose (TGhL) broth medium. Plates were then read daily on a spectrophotometer until positive controls reached maximum growth in order to determine growth curves for Bd. We tested the technique by screening skin bacteria from the Australian green-eyed tree frog Litoria serrata. Of bacteria tested, 31% showed some degree of Bd inhibition, while some may have promoted Bd growth, a previously unknown effect. Our cell-free supernatant challenge assay technique is an effective in vitro method for screening bacterial isolates for strong Bd-inhibitory activity. It contributes to the expanding field of bioaugmentation research, which could play a significant role in mitigating the effects of chytridiomycosis on amphibians around the world.
Resumo:
Neuraminidase was produced by 32.1% and 28.5% of Porphyromonas from dogs with and without periodontitis, respectively; and by 31.8% of bacteria from humans. The presence of neuraminidase in Porphyromonas spp. suggests that this enzyme can be involved with the pathogenesis of the periodontal disease, and the use of this assay to detect the neuraminidase production in oral Porphyromonas species is suggested.