996 resultados para CO2 laser annealing
Resumo:
In this work we analyze how patchy distributions of CO2 and brine within sand reservoirs may lead to significant attenuation and velocity dispersion effects, which in turn may have a profound impact on surface seismic data. The ultimate goal of this paper is to contribute to the understanding of these processes within the framework of the seismic monitoring of CO2 sequestration, a key strategy to mitigate global warming. We first carry out a Monte Carlo analysis to study the statistical behavior of attenuation and velocity dispersion of compressional waves traveling through rocks with properties similar to those at the Utsira Sand, Sleipner field, containing quasi-fractal patchy distributions of CO2 and brine. These results show that the mean patch size and CO2 saturation play key roles in the observed wave-induced fluid flow effects. The latter can be remarkably important when CO2 concentrations are low and mean patch sizes are relatively large. To analyze these effects on the corresponding surface seismic data, we perform numerical simulations of wave propagation considering reservoir models and CO2 accumulation patterns similar to the CO2 injection site in the Sleipner field. These numerical experiments suggest that wave-induced fluid flow effects may produce changes in the reservoir's seismic response, modifying significantly the main seismic attributes usually employed in the characterization of these environments. Consequently, the determination of the nature of the fluid distributions as well as the proper modeling of the seismic data constitute important aspects that should not be ignored in the seismic monitoring of CO2 sequestration problems.
Resumo:
Silver has been demonstrated to be a powerful cationization agent in mass spectrometry (MS) for various olefinic species such as cholesterol and fatty acids. This work explores the utility of metallic silver sputtering on tissue sections for high resolution imaging mass spectrometry (IMS) of olefins by laser desorption ionization (LDI). For this purpose, sputtered silver coating thickness was optimized on an assorted selection of mouse and rat tissues including brain, kidney, liver, and testis. For mouse brain tissue section, the thickness was adjusted to 23 ± 2 nm of silver to prevent ion suppression effects associated with a higher cholesterol and lipid content. On all other tissues, a thickness of at 16 ± 2 nm provided the best desorption/ionization efficiency. Characterization of the species by MS/MS showed a wide variety of olefinic compounds allowing the IMS of different lipid classes including cholesterol, arachidonic acid, docosahexaenoic acid, and triacylglyceride 52:3. A range of spatial resolutions for IMS were investigated from 150 μm down to the high resolution cellular range at 5 μm. The applicability of direct on-tissue silver sputtering to LDI-IMS of cholesterol and other olefinic compounds presents a novel approach to improve the amount of information that can be obtained from tissue sections. This IMS strategy is thus of interest for providing new biological insights on the role of cholesterol and other olefins in physiological pathways or disease.
Resumo:
We have studied the effects of rapid thermal annealing at 1300¿°C on GaN epilayers grown on AlN buffered Si(111) and on sapphire substrates. After annealing, the epilayers grown on Si display visible alterations with craterlike morphology scattered over the surface. The annealed GaN/Si layers were characterized by a range of experimental techniques: scanning electron microscopy, optical confocal imaging, energy dispersive x-ray microanalysis, Raman scattering, and cathodoluminescence. A substantial Si migration to the GaN epilayer was observed in the crater regions, where decomposition of GaN and formation of Si3N4 crystallites as well as metallic Ga droplets and Si nanocrystals have occurred. The average diameter of the Si nanocrystals was estimated from Raman scattering to be around 3¿nm. Such annealing effects, which are not observed in GaN grown on sapphire, are a significant issue for applications of GaN grown on Si(111) substrates when subsequent high-temperature processing is required.
Resumo:
We present our recent achievements in the growing and optical characterization of KYb(WO4)2 (hereafter KYbW) crystals and demonstrate laser operation in this stoichiometric material. Single crystals of KYbW with optimal crystalline quality have been grown by the top-seeded-solution growth slow-cooling method. The optical anisotropy of this monoclinic crystal has been characterized, locating the tensor of the optical indicatrix and measuring the dispersion of the principal values of the refractive indices as well as the thermo-optic coefficients. Sellmeier equations have been constructed valid in the visible and near-IR spectral range. Raman scattering has been used to determine the phonon energies of KYbW and a simple physical model is applied for classification of the lattice vibration modes. Spectroscopic studies (absorption and emission measurements at room and low temperature) have been carried out in the spectral region near 1 µm characteristic for the ytterbium transition. Energy positions of the Stark sublevels of the ground and the excited state manifolds have been determined and the vibronic substructure has been identified. The intrinsic lifetime of the upper laser level has been measured taking care to suppress the effect of reabsorption and the intrinsic quantum efficiency has been estimated. Lasing has been demonstrated near 1074 nm with 41% slope efficiency at room temperature using a 0.5 mm thin plate of KYbW. This laser material holds great promise for diode pumped high-power lasers, thin disk and waveguide designs as well as for ultrashort (ps/fs) pulse laser systems.
Resumo:
A atividade agrícola pode alterar a quantidade e qualidade da matéria orgânica do solo (MOS), resultando em emissões de dióxido de carbono (CO2) e óxido nitroso (N2O) do solo para a atmosfera. O sistema plantio direto (SPD) com a utilização de leguminosas em sistemas de rotação é uma estratégia que deve ser considerada tanto para o aumento da quantidade de MOS como para seu efeito na redução das emissões dos gases de efeito estufa. Com o objetivo de determinar os fluxos de gases do efeito estufa (CO2 e N2O) do solo, um experimento foi instalado em Tibagi (PR), em um Latossolo Vermelho distroférrico textura argilosa. Os tratamentos, dispostos em faixas não casualizadas com parcelas subdivididas, foram: sistema plantio direto por 12 anos com sucessões milho/trigo e soja/trigo (PD12 M/T e PD12 S/T, respectivamente) e por 22 anos (PD22 M/T e PD22 S/T, respectivamente). As emissões de CO2 do solo foram aproximadamente 20 % mais elevadas no PD22 em relação ao PD12. As emissões de CO2 apresentaram correlação significativa (R² = 0,85; p < 0,05) com a temperatura do solo, com emissões médias 40 % menores, registradas nos meses com temperaturas mais baixas. As emissões mais elevadas de N2O foram observadas após a colheita das culturas de verão, sobretudo na sucessão milho/trigo, em relação à sucessão soja/trigo. As emissões de N2O foram aproximadamente 25 % maiores após aplicação do fertilizante nitrogenado na cultura do trigo nas duas sucessões e apresentaram correlação significativa (R² = 0,88; p < 0,01) com o grau de saturação de água no solo (Sr %).
Resumo:
The graffiti on pottery discovered on the site of Aventicum (Avenches, VD/Switzerland) form the largest corpus of minor inscriptions of the Roman Empire studied until now. Indeed, a total of 1828 graffiti have been found. The reading and the recording of the inscriptions are generally dependent on the state of conservation of the graffito and its support. In numerous cases, only a pale shadow of the inscription is visible, which makes traditional observations, such as visual observations with the naked eye, unsuitable for its decipherment. Consequently, advanced techniques have been applied for enhancing the readability of such inscriptions. In our paper we show the efficiency of 3D laser profilometry as well as high resolution photography as powerful means to decipher illegible engraved inscriptions. The use of such analyses to decipher graffiti on pottery or on other materials enables a better understanding of minor inscriptions and improves the knowledge of the daily life of ancient populations substantially.
Resumo:
Organic residue application into soil alter the emission of gases to atmosphere and CO2, CH4, N2O may contribute to increase the greenhouse effect. This experiment was carried out in a restoration area on a dystrophic Ultisol (PVAd) to quantify greenhouse gas (GHG) emissions from soil under castor bean cultivation, treated with sewage sludge (SS) or mineral fertilizer. The following treatments were tested: control without N; FertMin = mineral fertilizer; SS5 = 5 t ha-1 SS (37.5 kg ha-1 N); SS10 = 10 t ha-1 SS (75 kg ha-1 N); and SS20 = 20 t ha-1 SS (150 kg ha-1 N). The amount of sludge was based on the recommended rate of N for castor bean (75 kg ha-1), the N level of SS and the mineralization fraction of N from SS. Soil gas emission was measured for 21 days. Sewage sludge and mineral fertilizers altered the CO2, CH4 and N2O fluxes. Soil moisture had no effect on GHG emissions and the gas fluxes was statistically equivalent after the application of FertMin and of 5 t ha-1 SS. The application of the entire crop N requirement in the form of SS practically doubled the Global Warming Potential (GWP) and the C equivalent emissions in comparison with FertMin treatments.
Resumo:
Laser diffraction (LD) provides detailed analysis of particle size distribution. Its application to testing the stability of soil aggregates can assist studies on the aggregation of soils with contrasting electrochemical properties. The objectives of the present work were: (a) to propose a protocol for using LD to study soil aggregation, (b) to study the aggregation of an Acrisol under the influence of different doses and forms of lime. Samples were collected in 2005 from a Brazilian Acrisol that in 1994 had received 0.0; 2.0; 8.5 and 17.0 Mg ha-1 of lime, left on the soil surface or incorporated. Aggregates from 4.76 to 8.00 mm diameters were studied using the traditional method proposed by Kemper & Chepil (1965), with wet sieving, while aggregates from 1.00 to 2.00 mm were studied using a CILAS® laser diffractometer that distinguishes particles ranging from 0.04 to 2,500.00 μm. LD readings were made after six consecutive pre-treatments, using agitation times, a chemical dispersion agent and ultrasound. Mean Weighted Diameter (MWD) and the Aggregate Stability Index (ASI) calculated, using the traditional method does not discriminate the treatments. However, LD is able to produce detailed data on soil aggregation, resulting in indexes of stability of aggregates that are linearly related to the doses of lime applied (MWD: R² = 0.986 and ASI: R² = 0.876). It may be concluded that electrochemical changes in the Brazilian Acrisol resulting from incorporated lime affect the stability of aggregates, increasing stability with increased doses of lime.
Resumo:
Time-dependent correlation functions and the spectrum of the transmitted light are calculated for absorptive optical bistability taking into account phase fluctuations of the driving laser. These fluctuations are modeled by an extended phase-diffusion model which introduces non-Markovian effects. The spectrum is obtained as a superposition of Lorentzians. It shows qualitative differences with respect to the usual calculation in which phase fluctuations of the driving laser are neglected.