899 resultados para Bayesian hierarchical model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Material properties of soft tissues are highly conditioned by the hierarchical structure of this kind of composites. These collagen-based tissues present a complex framework of fibres, fibrils, tropocollagen molecules and amino-acids. As the structural mechanisms that control the degradation of soft tissues are related with the behaviour of its fundamental constituents, the relationship between the molecular and intermolecular properties and the tissue behaviour needs to be studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En esta Tesis Doctoral se emplean y desarrollan Métodos Bayesianos para su aplicación en análisis geotécnicos habituales, con un énfasis particular en (i) la valoración y selección de modelos geotécnicos basados en correlaciones empíricas; en (ii) el desarrollo de predicciones acerca de los resultados esperados en modelos geotécnicos complejos. Se llevan a cabo diferentes aplicaciones a problemas geotécnicos, como es el caso de: (1) En el caso de rocas intactas, se presenta un método Bayesiano para la evaluación de modelos que permiten estimar el módulo de Young a partir de la resistencia a compresión simple (UCS). La metodología desarrollada suministra estimaciones de las incertidumbres de los parámetros y predicciones y es capaz de diferenciar entre las diferentes fuentes de error. Se desarrollan modelos "específicos de roca" para los tipos de roca más comunes y se muestra cómo se pueden "actualizar" esos modelos "iniciales" para incorporar, cuando se encuentra disponible, la nueva información específica del proyecto, reduciendo las incertidumbres del modelo y mejorando sus capacidades predictivas. (2) Para macizos rocosos, se presenta una metodología, fundamentada en un criterio de selección de modelos, que permite determinar el modelo más apropiado, entre un conjunto de candidatos, para estimar el módulo de deformación de un macizo rocoso a partir de un conjunto de datos observados. Una vez que se ha seleccionado el modelo más apropiado, se emplea un método Bayesiano para obtener distribuciones predictivas de los módulos de deformación de macizos rocosos y para actualizarlos con la nueva información específica del proyecto. Este método Bayesiano de actualización puede reducir significativamente la incertidumbre asociada a la predicción, y por lo tanto, afectar las estimaciones que se hagan de la probabilidad de fallo, lo cual es de un interés significativo para los diseños de mecánica de rocas basados en fiabilidad. (3) En las primeras etapas de los diseños de mecánica de rocas, la información acerca de los parámetros geomecánicos y geométricos, las tensiones in-situ o los parámetros de sostenimiento, es, a menudo, escasa o incompleta. Esto plantea dificultades para aplicar las correlaciones empíricas tradicionales que no pueden trabajar con información incompleta para realizar predicciones. Por lo tanto, se propone la utilización de una Red Bayesiana para trabajar con información incompleta y, en particular, se desarrolla un clasificador Naïve Bayes para predecir la probabilidad de ocurrencia de grandes deformaciones (squeezing) en un túnel a partir de cinco parámetros de entrada habitualmente disponibles, al menos parcialmente, en la etapa de diseño. This dissertation employs and develops Bayesian methods to be used in typical geotechnical analyses, with a particular emphasis on (i) the assessment and selection of geotechnical models based on empirical correlations; on (ii) the development of probabilistic predictions of outcomes expected for complex geotechnical models. Examples of application to geotechnical problems are developed, as follows: (1) For intact rocks, we present a Bayesian framework for model assessment to estimate the Young’s moduli based on their UCS. Our approach provides uncertainty estimates of parameters and predictions, and can differentiate among the sources of error. We develop ‘rock-specific’ models for common rock types, and illustrate that such ‘initial’ models can be ‘updated’ to incorporate new project-specific information as it becomes available, reducing model uncertainties and improving their predictive capabilities. (2) For rock masses, we present an approach, based on model selection criteria to select the most appropriate model, among a set of candidate models, to estimate the deformation modulus of a rock mass, given a set of observed data. Once the most appropriate model is selected, a Bayesian framework is employed to develop predictive distributions of the deformation moduli of rock masses, and to update them with new project-specific data. Such Bayesian updating approach can significantly reduce the associated predictive uncertainty, and therefore, affect our computed estimates of probability of failure, which is of significant interest to reliability-based rock engineering design. (3) In the preliminary design stage of rock engineering, the information about geomechanical and geometrical parameters, in situ stress or support parameters is often scarce or incomplete. This poses difficulties in applying traditional empirical correlations that cannot deal with incomplete data to make predictions. Therefore, we propose the use of Bayesian Networks to deal with incomplete data and, in particular, a Naïve Bayes classifier is developed to predict the probability of occurrence of tunnel squeezing based on five input parameters that are commonly available, at least partially, at design stages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuronal morphology is hugely variable across brain regions and species, and their classification strategies are a matter of intense debate in neuroscience. GABAergic cortical interneurons have been a challenge because it is difficult to find a set of morphological properties which clearly define neuronal types. A group of 48 neuroscience experts around the world were asked to classify a set of 320 cortical GABAergic interneurons according to the main features of their three-dimensional morphological reconstructions. A methodology for building a model which captures the opinions of all the experts was proposed. First, one Bayesian network was learned for each expert, and we proposed an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts was induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts was built. A thorough analysis of the consensus model identified different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types was defined by performing inference in the Bayesian multinet. These findings were used to validate the model and to gain some insights into neuron morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Material properties of soft fibrous tissues are highly conditioned by the hierarchical structure of this kind of composites. Collagen based tissues present, at decreasing length scales, a complex framework of fibres, fibrils, tropocollagen molecules and amino-acids. Understanding the mechanical behaviour at nano-scale level is critical to accurately incorporate this structural information in phenomenological damage models. In this work we derive a relationship between the mechanical and geometrical properties of the fibril constituents and the soft tissue material parameters at macroscopic scale. A Hodge–Petruska two-dimensional model has been used to describe the fibrils as staggered arrays of tropocollagen molecules. After a mechanical characterisation of each of the fibril components, two fibril failures modes have been defined related with two planes of weakness. A phenomenological continuous damage model with regularised softening was presented along with meso-structurally based definitions for its material parameters. Finally, numerical analysis at fibril, fibre and tissue levels are presented to show the capabilities of the model

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acknowledgment This research is supported by an award made by the RCUK Digital Economy program to the University of Aberdeen’s dot.rural Digital Economy Hub (ref. EP/G066051/1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Planning a goal-directed sequence of behavior is a higher function of the human brain that relies on the integrity of prefrontal cortical areas. In the Tower of London test, a puzzle in which beads sliding on pegs must be moved to match a designated goal configuration, patients with lesioned prefrontal cortex show deficits in planning a goal-directed sequence of moves. We propose a neuronal network model of sequence planning that passes this test and, when lesioned, fails in a way that mimics prefrontal patients’ behavior. Our model comprises a descending planning system with hierarchically organized plan, operation, and gesture levels, and an ascending evaluative system that analyzes the problem and computes internal reward signals that index the correct/erroneous status of the plan. Multiple parallel pathways connecting the evaluative and planning systems amend the plan and adapt it to the current problem. The model illustrates how specialized hierarchically organized neuronal assemblies may collectively emulate central executive or supervisory functions of the human brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El objetivo de este trabajo consiste en proponer un proceso de decisión secuencial y jerárquico que siguen los turistas vacacionales en cuatro etapas: 1) salir (o no) de vacaciones; 2) elección de un viaje nacional vs. internacional; 3) elección de determinadas áreas geográficas; y 4) elección de la modalidad del viaje -multidestino o de destino fijo- en estas áreas. Este análisis permite examinar las distintas fases que sigue un turista hasta seleccionar una determinada modalidad de viaje en un zona geográfica concreta, así como observar los factores que influyen en cada etapa. La aplicación empírica se realiza sobre una muestra de 3.781 individuos, y estima, mediante procedimientos bayesianos, un Modelo Logit de Coeficientes Aleatorios. Los resultados obtenidos revelan el carácter anidado y no independiente de las decisiones anteriores, lo que confirma el proceso secuencial y jerárquico propuesto.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El objetivo de este trabajo consiste en proponer y testar un proceso de decisión anidado y jerárquico que siguen los turistas vacacionales en cuatro etapas: 1) salir (o no) de vacaciones; 2) elección de un viaje nacional vs. internacional; 3) elección de determinadas áreas geográficas; y 4) elección de la modalidad del viaje –multidestino o de destino fijo– en estas áreas. Este análisis permite examinar las distintas fases que sigue un turista hasta seleccionar una determinada modalidad de viaje en un zona geográfica concreta, así como observar los factores que influyen en cada etapa. La aplicación empírica se realiza sobre una muestra de 3.781 individuos, y estima, mediante procedimientos bayesianos, un Modelo Logit de Coeficientes Aleatorios. Los resultados obtenidos revelan el carácter anidado y no independiente de las decisiones anteriores, lo que confirma el proceso anidado y jerárquico propuesto.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both long-term environmental changes such as those driven by the glacial cycles and more recent anthropogenic impacts have had major effects on the past demography in wild organisms. Within species, these changes are reflected in the amount and distribution of neutral genetic variation. In this thesis, mitochondrial and microsatellite DNA was analysed to investigate how environmental and anthropogenic factors have affected genetic diversity and structure in four ecologically different animal species. Paper I describes the post-glacial recolonisation history of the speckled-wood butterfly (Pararge aegeria) in Northern Europe. A decrease in genetic diversity with latitude and a marked population structure were uncovered, consistent with a hypothesis of repeated founder events during the postglacial recolonisation. Moreover, Approximate Bayesian Computation analyses indicate that the univoltine populations in Scandinavia and Finland originate from recolonisations along two routes, one on each side of the Baltic. Paper II aimed to investigate how past sea-level rises affected the population history of the convict surgeonfish (Acanthurus triostegus) in the Indo-Pacific. Assessment of the species’ demographic history suggested a population expansion that occurred approximately at the end of the last glaciation. Moreover, the results demonstrated an overall lack of phylogeographic structure, probably due to the high dispersal rates associated with the species’ pelagic larval stage. Populations at the species’ eastern range margin were significantly differentiated from other populations, which likely is a consequence of their geographic isolation. In Paper III, we assessed the effect of human impact on the genetic variation of European moose (Alces alces) in Sweden. Genetic analyses revealed a spatial structure with two genetic clusters, one in northern and one in southern Sweden, which were separated by a narrow transition zone. Moreover, demographic inference suggested a recent population bottleneck. The inferred timing of this bottleneck coincided with a known reduction in population size in the 19th and early 20th century due to high hunting pressure. In Paper IV, we examined the effect of an indirect but well-described human impact, via environmental toxic chemicals (PCBs), on the genetic variation of Eurasian otters (Lutra lutra) in Sweden. Genetic clustering assignment revealed differentiation between otters in northern and southern Sweden, but also in the Stockholm region. ABC analyses indicated a decrease in effective population size in both northern and southern Sweden. Moreover, comparative analyses of historical and contemporary samples demonstrated a more severe decline in genetic diversity in southern Sweden compared to northern Sweden, in agreement with the levels of PCBs found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modelling of inpatient length of stay (LOS) has important implications in health care studies. Finite mixture distributions are usually used to model the heterogeneous LOS distribution, due to a certain proportion of patients sustaining-a longer stay. However, the morbidity data are collected from hospitals, observations clustered within the same hospital are often correlated. The generalized linear mixed model approach is adopted to accommodate the inherent correlation via unobservable random effects. An EM algorithm is developed to obtain residual maximum quasi-likelihood estimation. The proposed hierarchical mixture regression approach enables the identification and assessment of factors influencing the long-stay proportion and the LOS for the long-stay patient subgroup. A neonatal LOS data set is used for illustration, (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The estimated parameters of output distance functions frequently violate the monotonicity, quasi-convexity and convexity constraints implied by economic theory, leading to estimated elasticities and shadow prices that are incorrectly signed, and ultimately to perverse conclusions concerning the effects of input and output changes on productivity growth and relative efficiency levels. We show how a Bayesian approach can be used to impose these constraints on the parameters of a translog output distance function. Implementing the approach involves the use of a Gibbs sampler with data augmentation. A Metropolis-Hastings algorithm is also used within the Gibbs to simulate observations from truncated pdfs. Our methods are developed for the case where panel data is available and technical inefficiency effects are assumed to be time-invariant. Two models-a fixed effects model and a random effects model-are developed and applied to panel data on 17 European railways. We observe significant changes in estimated elasticities and shadow price ratios when regularity restrictions are imposed. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Defining the pharmacokinetics of drugs in overdose is complicated. Deliberate self-poisoning is generally impulsive and associated with poor accuracy in dose history. In addition, early blood samples are rarely collected to characterize the whole plasma-concentration time profile and the effect of decontamination on the pharmacokinetics is uncertain. The aim of this study was to explore a fully Bayesian methodology for population pharmacokinetic analysis of data that arose from deliberate self-poisoning with citalopram. Prior information on the pharmacokinetic parameters was elicited from 14 published studies on citalopram when taken in therapeutic doses. The data set included concentration-time data from 53 patients studied after 63 citalopram overdose events (dose range: 20-1700 mg). Activated charcoal was administered between 0.5 and 4 h after 17 overdose events. The clinical investigator graded the veracity of the patients' dosing history on a 5-point ordinal scale. Inclusion of informative priors stabilised the pharmacokinetic model and the population mean values could be estimated well. There were no indications of non-linear clearance after excessive doses. The final model included an estimated uncertainty of the dose amount which in a simulation study was shown to not affect the model's ability to characterise the effects of activated charcoal. The effect of activated charcoal on clearance and bioavailability was pronounced and resulted in a 72% increase and 22% decrease, respectively. These findings suggest charcoal administration is potentially beneficial after citalopram overdose. The methodology explored seems promising for exploring the dose-exposure relationship in the toxicological settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study examined the applicability of the double ABCX model of family adjustment in explaining maternal adjustment to caring for a child diagnosed with Asperger syndrome. Forty-seven mothers completed questionnaires at a university clinic while their children were participating in an anxiety intervention. The children were aged between 10 and 12 years. Results of correlations showed that each of the model components was related to one or more domains of maternal adjustment in the direction predicted, with the exception of problem-focused coping. Hierarchical regression analyses demonstrated that, after controlling for the effects of relevant demographics, stressor severity, pile-up of demands and coping were related to adjustment. Findings indicate the utility of the double ABCX model in guiding research into parental adjustment when caring for a child with Asperger syndrome. Limitations of the study and clinical implications are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Standard factorial designs sometimes may be inadequate for experiments that aim to estimate a generalized linear model, for example, for describing a binary response in terms of several variables. A method is proposed for finding exact designs for such experiments that uses a criterion allowing for uncertainty in the link function, the linear predictor, or the model parameters, together with a design search. Designs are assessed and compared by simulation of the distribution of efficiencies relative to locally optimal designs over a space of possible models. Exact designs are investigated for two applications, and their advantages over factorial and central composite designs are demonstrated.