930 resultados para Balancing and Optimization of lines
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Optimization of the RAPD reaction for characterizing Salmonella enterica serovar Typhi strains was studied in order to ensure the reproducibility and the discriminatory power of this technique. Eight Salmonella serovar Typhi strains isolated from various regions in Brazil were examined for the fragment patterns produced using different concentrations of DNA template, primer, MgCl2 and Taq DNA polymerase. Using two different low stringency thermal cycle profiles, the RAPD fingerprints obtained were compared. A set of sixteen primers was evaluated for their ability to produce a high number of distinct fragments. We found that variations associated to all of the tested parameters modified the fingerprinting patterns. For the strains of Salmonella enterica serovar Typhi used in this experiment, we have defined a set of conditions for RAPD-PCR reaction, which result in a simple, fast and reproducible typing method.
Resumo:
Breast cancer is the most common cancer among women, being a major public health problem. Worldwide, X-ray mammography is the current gold-standard for medical imaging of breast cancer. However, it has associated some well-known limitations. The false-negative rates, up to 66% in symptomatic women, and the false-positive rates, up to 60%, are a continued source of concern and debate. These drawbacks prompt the development of other imaging techniques for breast cancer detection, in which Digital Breast Tomosynthesis (DBT) is included. DBT is a 3D radiographic technique that reduces the obscuring effect of tissue overlap and appears to address both issues of false-negative and false-positive rates. The 3D images in DBT are only achieved through image reconstruction methods. These methods play an important role in a clinical setting since there is a need to implement a reconstruction process that is both accurate and fast. This dissertation deals with the optimization of iterative algorithms, with parallel computing through an implementation on Graphics Processing Units (GPUs) to make the 3D reconstruction faster using Compute Unified Device Architecture (CUDA). Iterative algorithms have shown to produce the highest quality DBT images, but since they are computationally intensive, their clinical use is currently rejected. These algorithms have the potential to reduce patient dose in DBT scans. A method of integrating CUDA in Interactive Data Language (IDL) is proposed in order to accelerate the DBT image reconstructions. This method has never been attempted before for DBT. In this work the system matrix calculation, the most computationally expensive part of iterative algorithms, is accelerated. A speedup of 1.6 is achieved proving the fact that GPUs can accelerate the IDL implementation.
Resumo:
Field Lab of Entrepreneurial Innovative Ventures
Resumo:
The present paper is a personal reflection on a work project carried out to promote exports from Portugal to Germany in the IT area, under consideration of the deliverables required by the clients CCILA and Anetie. The project outcome approaches the fact that the majority of the Portuguese market players has disadvantages in size and does rarely coordinate activities among each other, which hinders them to export successfully on a broad scale. To bring together Portuguese delivery potential and German market demand, expert interviews were conducted. Based on the findings, a concept was developed to overcome the domestic collaboration issues in order to strengthen the national exports in the identified sector - embedded systems implementation services for machinery and equipment companies.
Resumo:
An energy harvesting system requires an energy storing device to store the energy retrieved from the surrounding environment. This can either be a rechargeable battery or a supercapcitor. Due to the limited lifetime of rechargeable batteries, they need to be periodically replaced. Therefore, a supercapacitor, which has ideally a limitless number of charge/discharge cycles can be used to store the energy; however, a voltage regulator is required to obtain a constant output voltage as the supercapacitor discharges. This can be implemented by a Switched-Capacitor DC-DC converter which allows a complete integration in CMOS technology, although it requires several topologies in order to obtain a high efficiency. This thesis presents the complete analysis of four different topologies in order to determine expressions that allow to design and determine the optimum input voltage ranges for each topology. To better understand the parasitic effects, the implementation of the capacitors and the non-ideal effect of the switches, in 130 nm technology, were carefully studied. With these two analysis a multi-ratio SC DC-DC converter was designed with an output power of 2 mW, maximum efficiency of 77%, and a maximum output ripple, in the steady state, of 23 mV; for an input voltage swing of 2.3 V to 0.85 V. This proposed converter has four operation states that perform the conversion ratios of 1/2, 2/3, 1/1 and 3/2 and its clock frequency is automatically adjusted to produce a stable output voltage of 1 V. These features are implemented through two distinct controller circuits that use asynchronous time machines (ASM) to dynamically adjust the clock frequency and to select the active state of the converter. All the theoretical expressions as well as the behaviour of the whole system was verified using electrical simulations.
Resumo:
Simulated moving bed (SMB) chromatography is attracting more and more attention since it is a powerful technique for complex separation tasks. Nowadays, more than 60% of preparative SMB units are installed in the pharmaceutical and in the food in- dustry [SDI, Preparative and Process Liquid Chromatography: The Future of Process Separations, International Strategic Directions, Los Angeles, USA, 2002. http://www. strategicdirections.com]. Chromatography is the method of choice in these ¯elds, be- cause often pharmaceuticals and ¯ne-chemicals have physico-chemical properties which di®er little from those of the by-products, and they may be thermally instable. In these cases, standard separation techniques as distillation and extraction are not applicable. The noteworthiness of preparative chromatography, particulary SMB process, as a sep- aration and puri¯cation process in the above mentioned industries has been increasing, due to its °exibility, energy e±ciency and higher product purity performance. Consequently, a new SMB paradigm is requested by the large number of potential small- scale applications of the SMB technology, which exploits the °exibility and versatility of the technology. In this new SMB paradigm, a number of possibilities for improving SMB performance through variation of parameters during a switching interval, are pushing the trend toward the use of units with smaller number of columns because less stationary phase is used and the setup is more economical. This is especially important for the phar- maceutical industry, where SMBs are seen as multipurpose units that can be applied to di®erent separations in all stages of the drug-development cycle. In order to reduce the experimental e®ort and accordingly the coast associated with the development of separation processes, simulation models are intensively used. One impor- tant aspect in this context refers to the determination of the adsorption isotherms in SMB chromatography, where separations are usually carried out under strongly nonlinear conditions in order to achieve higher productivities. The accurate determination of the competitive adsorption equilibrium of the enantiomeric species is thus of fundamental importance to allow computer-assisted optimization or process scale-up. Two major SMB operating problems are apparent at production scale: the assessment of product quality and the maintenance of long-term stable and controlled operation. Constraints regarding product purity, dictated by pharmaceutical and food regulatory organizations, have drastically increased the demand for product quality control. The strict imposed regulations are increasing the need for developing optically pure drugs.(...)
Resumo:
The obligate intracellular bacterium Chlamydia trachomatis is a human pathogen of major public health significance. Strains can be classified into 15 main serovars (A to L3) that preferentially cause ocular infections (A-C), genital infections (D-K) or lymphogranuloma venereum (LGV) (L1-L3), but the molecular basis behind their distinct tropism, ecological success and pathogenicity is not welldefined. Most chlamydial research demands culture in eukaryotic cell lines, but it is not known if stains become laboratory adapted. By essentially using genomics and transcriptomics, we aimed to investigate the evolutionary patterns underlying the adaptation of C. trachomatis to the different human tissues, given emphasis to the identification of molecular patterns of genes encoding hypothetical proteins, and to understand the adaptive process behind the C. trachomatis in vivo to in vitro transition. Our results highlight a positive selection-driven evolution of C. trachomatis towards nichespecific adaptation, essentially targeting host-interacting proteins, namely effectors and inclusion membrane proteins, where some of them also displayed niche-specific expression patterns. We also identified potential "ocular-specific" pseudogenes, and pointed out the major gene targets of adaptive mutations associated with LGV infections. We further observed that the in vivo-derived genetic makeup of C. trachomatis is not significantly compromised by its long-term laboratory propagation. In opposition, its introduction in vitro has the potential to affect the phenotype, likely yielding virulence attenuation. In fact, we observed a "genital-specific" rampant inactivation of the virulence gene CT135, which may impact the interpretation of data derived from studies requiring culture. Globally, the findings presented in this Ph.D. thesis contribute for the understanding of C.trachomatis adaptive evolution and provides new insights into the biological role of C. trachomatishypothetical proteins. They also launch research questions for future functional studies aiming toclarify the determinants of tissue tropism, virulence or pathogenic dissimilarities among C. trachomatisstrains.
Resumo:
Phosphorus (P) is becoming a scarce element due to the decreasing availability of primary sources. Therefore, recover P from secondary sources, e.g. waste streams, have become extremely important. Sewage sludge ash (SSA) is a reliable secondary source of P. The use of SSAs as a direct fertilizer has very restricted legislation due to the presence of inorganic contaminants. Furthermore, the P present in SSAs is not in a plant-available form. The electrodialytic (ED) process is one of the methods under development to recover P and simultaneously remove heavy metals. The present work aimed to optimize the P recovery through a 2 compartment electrodialytic cell. The research was divided in three independent phases. In the first phase, ED experiments were carried out for two SSAs from different seasons, varying the duration of the ED process (2, 4, 6 and 9 days). During the ED treatment the SSA was suspended in distilled water in the anolyte, which was separated from the catholyte by a cation exchange membrane. From both ashes 90% of P was successfully extracted after 6 days of treatment. Regarding the heavy metals removal, one of the SSAs had a better removal than the other. Therefore, it was possible to conclude that SSAs from different seasons can be submitted to ED process under the same parameters. In the second phase, the two SSAs were exposed to humidity and air prior to ED, in order to carbonate them. Although this procedure was not successful, ED experiments were carried out varying the duration of the treatment (2 and 6 days) and the period of air exposure that SSAs were submitted to (7, 14 and 30 days). After 6 days of treatment and 30 days of air exposure, 90% of phosphorus was successfully extracted from both ashes. No differences were identified between carbonated and non-carbonated SSAs. Thus, SSAs that were exposed to the air and humidity, e.g. SSAs stored for 30 days in an open deposit, can be treated under the same parameters as the SSAs directly collected from the incineration process. In the third phase, ED experiments were carried out during 6 days varying the stirring time (0, 1, 2 and 4 h/day) in order to investigate if energy can be saved on the stirring process. After 6 days of treatment and 4 h/day stirring, 80% and 90% of P was successfully extracted from SSA-A and SSA-B, respectively. This value is very similar to the one obtained for 6 days of treatment stirring 24 h/day.
Resumo:
This work documents the deposition and optimization of semiconductor thin films using chemical spray coating technique (CSC) for application on thin-film transistors (TFTs), with a low-cost, simple method. CSC setup was implemented and explored for industrial application, within Holst Centre, an R&D center in the Netherlands. As zinc oxide had already been studied within the organization, it was used as a standard material in the initial experiments, obtaining typical mobility values of 0.14 cm2/(V.s) for unpatterned TFTs. Then, oxide X layer characteristics were compared for films deposited with CSC at 40°C and spin-coating. The mobility of the spin-coated TFTs was 103 cm2/(V.s) higher, presumably due to the lack of uniformity of spray-coated film at such low temperatures. Lastly, tin sulfide, a relatively unexplored material, was deposited by CSC in order to obtain functional TFTs and explore the device’s potential for working as a phototransistor. Despite the low mobilities of the devices, a sensitive photodetector was made, showing drain current variation of nearly one order of magnitude under yellow light. CSC technique’s simplicity and versatility was confirmed, as three different semiconductors were successfully implemented into functional devices.
Resumo:
Cancer remains as one of the top killing diseases in first world countries. It’s not a single, but a set of various diseases for which different treatment approaches have been taken over the years. Cancer immunotherapy comes as a “new” breath on cancer treatment, taking use of the patients’ immune system to induce anti-cancer responses. Dendritic Cell (DC) vaccines use the extraordinary capacity of DCs’ antigen presentation so that specific T cell responses may be generated against cancer. In this work, we report the ex vivo generation of DCs from precursors isolated from clinical-grade cryopreserved umbilical cord blood (UCB) samples. After the thawing protocol for cryopreserved samples was optimized, the generation of DCs from CD14+ monocytes, i.e., moDCs, or CD34+ hematopoietic stem cells (HSCs), i.e, CD34-derived DCs, was followed and their phenotype and function evaluated. Functional testing included the ability to respond to maturation stimuli (including enzymatic removal of surface sialic acids), Ovalbumin-FITC endocytic capacity, cytokine secretion and T cell priming ability. In order to evaluate the feasibility of using DCs derived from UCB precursors to induce immune responses, they were compared to peripheral blood (PB) moDCs. We observed an increased endocytosis capacity after moDCs were differentiated from monocyte precursors, but almost 10-fold lower than that of PB moDCs. Maturation markers were absent, low levels of inflammatory cytokines were seen and T cell stimulatory capacity was reduced. Sialidase enzymatic treatment was able to mature these cells, diminishing endocytosis and promoting higher T cell stimulation. CD34-derived DCs showed higher capacity for both maturation and endocytic capacity than moDCs. Although much more information was acquired from moDCs than from CD34-derived DCs, we conclude the last as probably the best suited for generating an immune response against cancer, but of course much more research has to be performed.
Resumo:
In order to address and resolve the wastewater contamination problem of the Sines refinery with the main objective of optimizing the quality of this stream and reducing the costs charged to the refinery, a dynamic mass balance was developed nd implemented for ammonia and polar oil and grease (O&G) contamination in the wastewater circuit. The inadequate routing of sour gas from the sour water stripping unit and the kerosene caustic washing unit, were identified respectively as the major source of ammonia and polar substances present in the industrial wastewater effluent. For the O&G content, a predictive model was developed for the kerosene caustic washing unit, following the Projection to Latent Structures (PLS) approach. Comparison between analytical data for ammonia and polar O&G concentrations in refinery wastewater originating from the Dissolved Air Flotation (DAF) effluent and the model predictions of the dynamic mass balance calculations are in a very good agreement and highlights the dominant impact of the identified streams for the wastewater contamination levels. The ammonia contamination problem was solved by rerouting the sour gas through an existing clogged line with ammonia salts due to a non-insulated line section, while for the O&G a dynamic mass balance was implemented as an online tool, which allows for prevision of possible contamination situations and taking the required preventive actions, and can also serve as a basis for establishing relationships between the O&G contamination in the refinery wastewater with the properties of the refined crude oils and the process operating conditions. The PLS model developed could be of great asset in both optimizing the existing and designing new refinery wastewater treatment units or reuse schemes. In order to find a possible treatment solution for the spent caustic problem, an on-site pilot plant experiments for NaOH recovery from the refinery kerosene caustic washing unit effluent using an alkaline-resistant nanofiltration (NF) polymeric membrane were performed in order to evaluate its applicability for treating these highly alkaline and contaminated streams. For a constant operating pressure and temperature and adequate operating conditions, 99.9% of oil and grease rejection and 97.7% of chemical oxygen demand (COD) rejection were observed. No noticeable membrane fouling or flux decrease were registered until a volume concentration factor of 3. These results allow for NF permeate reuse instead of fresh caustic and for significant reduction of the wastewater contamination, which can result in savings of 1.5 M€ per year at the current prices for the largest Portuguese oil refinery. The capital investments needed for implementation of the required NF membrane system are less than 10% of those associated with the traditional wet air oxidation solution of the spent caustic problem. The operating costs are very similar, but can be less than half if reusing the NF concentrate in refinery pH control applications. The payback period was estimated to be 1.1 years. Overall, the pilot plant experimental results obtained and the process economic evaluation data indicate a very competitive solution through the proposed NF treatment process, which represents a highly promising alternative to conventional and existing spent caustic treatment units.