973 resultados para BOSE-EINSTEIN CONDENSATE
Resumo:
The need for reexamination of the standard model of strong, weak, and electromagnetic interactions is discussed, especially with regard to 't Hooft's criterion of naturalness. It has been argued that theories with fundamental scalar fields tend to be unnatural at relatively low energies. There are two solutions to this problem: (i) a global supersymmetry, which ensures the absence of all the naturalness-violating effects associated with scalar fields, and (ii) composite structure of the scalar fields, which starts showing up at energy scales where unnatural effects would otherwise have appeared. With reference to the second solution, this article reviews the case for dynamical breaking of the gauge symmetry and the technicolor scheme for the composite Higgs boson. This new interaction, of the scaled-up quantum chromodynamic type, keeps the new set of fermions, the technifermions, together in the Higgs particles. It also provides masses for the electroweak gauge bosons W± and Z0 through technifermion condensate formation. In order to give masses to the ordinary fermions, a new interaction, the extended technicolor interaction, which would connect the ordinary fermions to the technifermions, is required. The extended technicolor group breaks down spontaneously to the technicolor group, possibly as a result of the "tumbling" mechanism, which is discussed here. In addition, the author presents schemes for the isospin breaking of mass matrices of ordinary quarks in the technicolor models. In generalized technicolor models with more than one doublet of technifermions or with more than one technicolor sector, we have additional low-lying degrees of freedom, the pseudo-Goldstone bosons. The pseudo-Goldstone bosons in the technicolor model of Dimopoulos are reviewed and their masses computed. In this context the vacuum alignment problem is also discussed. An effective Lagrangian is derived describing colorless low-lying degrees of freedom for models with two technicolor sectors in the combined limits of chiral symmetry and large number of colors and technicolors. Finally, the author discusses suppression of flavor-changing neutral currents in the extended technicolor models.
Resumo:
The discovery of magnetic superconductors has posed the problem of the coexistence of two kinds of orders (magnetic and superconducting) in some temperature intervals in these systems. New microscopic mechanisms developed by us to explain the coexistence and reentrant behaviour are reported. The mechanism for antiferromagnetic superconductors which shows enhancement of superconductivity below the magnetic transition is found relevant for rare-earth systems having less than half-filled f-atomic shells. The theory will be compared with the experimental results of SmRh4B4 system. A phenomenological treatment based on a generalized Ginzburg-Landau approach will also be presented to explain the anomalous behaviour of the second critical field in some antiferromagnetic superconductors. These magnetic superconductors provide two kinds of Bose fields, namely, phonons and magnons which interact with each other and also with the conduction electrons. Theoretical studies of the effects of the excitations of these modes on superconducting pairing and magnetic ordering in these systems will be discussed.
Resumo:
We present an analysis of the breakdown of the most probable approximation to the Mayer cluster size distribution for clusters of size comparable to the size of the system. This failure is illustrated by considering an ideal Bose gas for which exact volume dependent reducible cluster integrals are available.
Resumo:
We have considered a two-band Hubbard model having interlaced Cu-3d(x2−y2) and O-2p(x, y) orbitals representing the CuO2 square planes. Simple CuO2 -cluster calculation suggests that the additional holes created by doping stay mainly on oxygen. Motion of an oxygen hole interlacing with the antiferromagnetically correlated background of copper spins, creates a string of high energy spin configuration of finite length giving mass renormalization. Another hole of opposite spin can now anneal this string tension providing a triangular pairing potential for large pair momentum. The latter implies unusual Bose condensation of the wake-bound compact Bose-like pairs on a non-zero momentum shell. Effect of disorder favouring condensation at the mobility edge is pointed out.
Resumo:
The resistivity of selenium-doped n-InP single crystal layers grown by liquid-phase epitaxy with electron concentrations varying from 6.7 x 10$^18$ to 1.8 x 10$^20$ cm$^{-3}$ has been measured as a function of hydrostatic pressure up to 10 GPa. Semiconductor-metal transitions were observed in each case with a change in resistivity by two to three orders of magnitude. The transition pressure p$_c$ decreased monotonically from 7.24 to 5.90 GPa with increasing doping concentration n according to the relation $p_c = p_o [1 - k(n/n_m)^a]$, where n$_m$ is the concentration (per cubic centimetre) of phosphorus donor sites in InP atoms, p$_o$ is the transition pressure at low doping concentrations, k is a constant and $\alpha$ is an exponent found experimentally to be 0.637. The decrease in p$_c$ is considered to be due to increasing internal stress developed at high concentrations of ionized donors. The high-pressure metallic phase had a resistivity (2.02-6.47) x 10$^{-7}$ $\Omega$ cm, with a positive temperature coefficient dependent on doping.
Resumo:
Vapour species effusing from a magnesia Knudsen cell containing Mg-Zn alloy at 923 K were condensed on a water cooled copper plate. The equilibrium composition of the vapour phase over the alloy was determined from chemical analysis of the condensate. The activity coefficients of both components in the alloy have been derived from the data using a modified Gibbs-Duhem relation. The ratio of saturation vapour pressures of pure Zn and Mg obtained from the analysis of alloy data agree well with values from the literature, providing an internal check on the accuracy of data obtained in this study. Both components of the alloy exhibit negative deviations from Raoult's law. The concentration-concentration structure factor of Bhatia and Thomton at zero wave vector, evaluated from the measurements, indicate the presence of MgZn2 type complex in the liquid state. The associated regular solution model has been used for the thermodynamic description of liquid Mg-Zn alloys.
Resumo:
Using electron spin resonance spectroscopy (ESR), we measure the rotational mobility of probe molecules highly diluted in deeply supercooled bulk water and negligibly constrained by the possible ice fraction. The mobility increases above the putative glass transition temperature of water, T-g = 136 K, and smoothly connects to the thermodynamically stable region by traversing the so called "no man's land" (the range 150-235 K), where it is believed that the homogeneous nucleation of ice suppresses the liquid water. Two coexisting fractions of the probe molecules are evidenced. The 2 fractions exhibit different mobility and fragility; the slower one is thermally activated (low fragility) and is larger at low temperatures below a fragile-to-strong dynamic cross-over at approximate to 225 K. The reorientation of the probe molecules decouples from the viscosity below approximate to 225 K. The translational diffusion of water exhibits a corresponding decoupling at the same temperature [Chen S-H, et al. (2006) The violation of the Stokes-Einstein relation in supercooled water. Proc Natl Acad Sci USA 103:12974-12978]. The present findings are consistent with key issues concerning both the statics and the dynamics of supercooled water, namely the large structural fluctuations [Poole PH, Sciortino F, Essmann U, Stanley HE (1992) Phase behavior of metastable water. Nature 360: 324-328] and the fragile-to-strong dynamic cross-over at approximate to 228 K [Ito K, Moynihan CT, Angell CA (1999) Thermodynamic determination of fragility in liquids and a fragile-tostrong liquid transition in water. Nature 398: 492-494].
Resumo:
We present a unified approach to repulsion in ionic and van der Waals solids based on a compressible-ion/atom model. Earlier studies have shown that repulsion in ionic crystals can be viewed as arising from the compression energy of ions, described by two parameters per ion. Here we obtain the compression parameters of the rare-gas atoms Ne. Ar. Kr and Xe by interpolation using the known parameters of related equi-electronic ions (e.g. Ar from S2-. Cl-, K- and Ca2-). These parameters fit the experimental zero-temperature interatomic distances and compressibilities of the rare-gas crystals satisfactorily. A hightemperature equation of state based on an Einstein model of thermal motions is used to calculate the thermal expansivities, compressibilities and their temperature derivatives for Ar. Kr and Xe. It is argued that an instability at higher temperatures represents the limit to which the solid can be superheated. beyond which sublimation must occur.
Resumo:
Autographed dedication: An Margot Einstein in innigem Gedenken an ihrem Vater, meinem grossen and teueren Freund Albert Einstein. Herzlichst Elisabeth April 1956
Resumo:
Clippings on the dedication of the memorial of the former Jewish community of Lichtenau held on April 13 1986; commemoration speech by Ilse Noel.
Resumo:
Gravitaation kvanttiteorian muotoilu on ollut teoreettisten fyysikkojen tavoitteena kvanttimekaniikan synnystä lähtien. Kvanttimekaniikan soveltaminen korkean energian ilmiöihin yleisen suhteellisuusteorian viitekehyksessä johtaa aika-avaruuden koordinaattien operatiiviseen ei-kommutoivuuteen. Ei-kommutoivia aika-avaruuden geometrioita tavataan myös avointen säikeiden säieteorioiden tietyillä matalan energian rajoilla. Ei-kommutoivan aika-avaruuden gravitaatioteoria voisi olla yhteensopiva kvanttimekaniikan kanssa ja se voisi mahdollistaa erittäin lyhyiden etäisyyksien ja korkeiden energioiden prosessien ei-lokaaliksi uskotun fysiikan kuvauksen, sekä tuottaa yleisen suhteellisuusteorian kanssa yhtenevän teorian pitkillä etäisyyksillä. Tässä työssä tarkastelen gravitaatiota Poincarén symmetrian mittakenttäteoriana ja pyrin yleistämään tämän näkemyksen ei-kommutoiviin aika-avaruuksiin. Ensin esittelen Poincarén symmetrian keskeisen roolin relativistisessa fysiikassa ja sen kuinka klassinen gravitaatioteoria johdetaan Poincarén symmetrian mittakenttäteoriana kommutoivassa aika-avaruudessa. Jatkan esittelemällä ei-kommutoivan aika-avaruuden ja kvanttikenttäteorian muotoilun ei-kommutoivassa aika-avaruudessa. Mittasymmetrioiden lokaalin luonteen vuoksi tarkastelen huolellisesti mittakenttäteorioiden muotoilua ei-kommutoivassa aika-avaruudessa. Erityistä huomiota kiinnitetään näiden teorioiden vääristyneeseen Poincarén symmetriaan, joka on ei-kommutoivan aika-avaruuden omaama uudentyyppinen kvanttisymmetria. Seuraavaksi tarkastelen ei-kommutoivan gravitaatioteorian muotoilun ongelmia ja niihin kirjallisuudessa esitettyjä ratkaisuehdotuksia. Selitän kuinka kaikissa tähänastisissa lähestymistavoissa epäonnistutaan muotoilla kovarianssi yleisten koordinaattimunnosten suhteen, joka on yleisen suhteellisuusteorian kulmakivi. Lopuksi tutkin mahdollisuutta yleistää vääristynyt Poincarén symmetria lokaaliksi mittasymmetriaksi --- gravitaation ei-kommutoivan mittakenttäteorian saavuttamisen toivossa. Osoitan, että tällaista yleistystä ei voida saavuttaa vääristämällä Poincarén symmetriaa kovariantilla twist-elementillä. Näin ollen ei-kommutoivan gravitaation ja vääristyneen Poincarén symmetrian tutkimuksessa tulee jatkossa keskittyä muihin lähestymistapoihin.
Resumo:
Our present-day understanding of fundamental constituents of matter and their interactions is based on the Standard Model of particle physics, which relies on quantum gauge field theories. On the other hand, the large scale dynamical behaviour of spacetime is understood via the general theory of relativity of Einstein. The merging of these two complementary aspects of nature, quantum and gravity, is one of the greatest goals of modern fundamental physics, the achievement of which would help us understand the short-distance structure of spacetime, thus shedding light on the events in the singular states of general relativity, such as black holes and the Big Bang, where our current models of nature break down. The formulation of quantum field theories in noncommutative spacetime is an attempt to realize the idea of nonlocality at short distances, which our present understanding of these different aspects of Nature suggests, and consequently to find testable hints of the underlying quantum behaviour of spacetime. The formulation of noncommutative theories encounters various unprecedented problems, which derive from their peculiar inherent nonlocality. Arguably the most serious of these is the so-called UV/IR mixing, which makes the derivation of observable predictions especially hard by causing new tedious divergencies, to which our previous well-developed renormalization methods for quantum field theories do not apply. In the thesis I review the basic mathematical concepts of noncommutative spacetime, different formulations of quantum field theories in the context, and the theoretical understanding of UV/IR mixing. In particular, I put forward new results to be published, which show that also the theory of quantum electrodynamics in noncommutative spacetime defined via Seiberg-Witten map suffers from UV/IR mixing. Finally, I review some of the most promising ways to overcome the problem. The final solution remains a challenge for the future.
Resumo:
Correspondence, clippings, manuscripts, notes, reports, relating to Bernstein's journalistic, literary and diplomatic careers. Correspondence with well-known literary, political and communal, society personalities, 1908-1935. Includes Cyrus Adler, Viscount Allenby, Joseph Barondess, Bernard Baruch, Henri Bergson, Hayyim Nahman Bialik, Jacob Billikopf, Vladimir Bourtzeff, Louis Brandeis, Robert Cecil, Fyodor Chaliapin, Jacob de Haas, Albert Einstein, Henry Ford, Felix Frankfurter, Herbert Hoover, Vladimir Jabotinsky, Horace M. Kallen, Peretz Hirschbein, Peter Kropotkin, Herbert Lehman, Louis Lipsky, Judah L. Magnes, Louis Marshall, Henry Morgenthau, Max Nordau, Adolph Simon Ochs, David de Sola Pool, Bernard G. Richards, Theodore Roosevelt, Julius Rosenwald, Jacob Schiff, Harry Schneiderman, Maurice Schwartz, George Bernard Shaw, Sholem Aleichem, Nathan Straus, Henrietta Szold, Chaim Tchernowitz, Leo Tolstoy, Samuel Untermyer, Henry Van Dyke, Lillian Wald, Felix Warburg, Chaim Weizman n, Jefferson Williams, Stephen Wise, Israel Zangwill. Correspondence and other materials relating to Bernstein's post as U.S. ambassador to Albania. Materials pertaining to Bernstein's editorial work at *The Day*, *Jewish Tribune*, *New York Herald*, *Jewish Daily Bulletin*. Materials pertaining to Bernstein's involvement with the American Jewish Committee. Correspondence with organizations including American Jewish Congress, *American Hebrew*, HIAS, *Jewish Chronicle* (London), Jewish Community of New York, *Menorah Journal*, *New York American*, *New York Times*, ORT, U.S. Dept. of State, Yiddish Art Theater, Zionist Organization of America. Articles, clippings, correspondence and court materials relating to the Ford libel suit. Miscellaneous documents and reports relating to the Paris Peace Conference, the Jewish situation in Russia, 1917-1920, Russian revolutionary events of 1917. News dispatches from Russia, 1917-1920s. Translations by Bernstein of Russian wri Andre yev,