993 resultados para ACID PRETREATMENT
Resumo:
The minor base composition of Mycobacterium smegmatis tRNA has been studied. Thin-layer chromatographic patterns of a ribonuclease T2 digest of mycobacterial tRNA indicated the presence of appreciable amounts of 1-methyladenosine (which is commonly present only in eucaryotic tRNA), dihydrouridine, and 7-methylguanosine. Ribothymidine was absent. The S-adenosylmethionine-dependent tRNA methylases of M. smegmatis catalyzed the formation of 1-methyladenosine when Escherichia coli tRNA was used as acceptor. Similarly, E. coli extracts methylated the tRNA of M. smegmatis, forming ribothymidine.
Resumo:
Organocatalysis, the use of organic molecules as catalysts, is attracting increasing attention as one of the most modern and rapidly growing areas of organic chemistry, with countless research groups in both academia and the pharmaceutical industry around the world working on this subject. The literature review of this thesis mainly focuses on metal-free systems for hydrogen activation and organocatalytic reduction. Since these research topics are relatively new, the literature review also highlights the basic principles of the use of Lewis acid-Lewis base pairs, which do not react irreversibly with each other, as a trap for small molecules. The experimental section progresses from the first observation of the facile heterolytical cleavage of hydrogen gas by amines and B(C6F5)3 to highly active non-metal catalysts for both enantioselective and racemic hydrogenation of unsaturated nitrogen-containing compounds. Moreover, detailed studies of structure-reactivity relationships of these systems by X-ray, neutron diffraction, NMR methods and quantum chemical calculations were performed to gain further insight into the mechanism of hydrogen activation and hydrogenation by boron-nitrogen compounds.
Resumo:
The determination of the state-of-charge of the lead-acid battery has been examined from the viewpoint of internal impedance. It is shown that the impedance is controlled by charge transfer and to a smaller extent by diffusion processes in the frequency range 15–100 Hz. The equivalent series/parallel capacitance as well as the a.c. phase-shift show a parabolic dependence upon the state-of-charge, with a maximum or minimum at 50% charge. These results are explained on the basis of a uniform transmission-line analog equivalent circuit for the battery electrodes.
Resumo:
The torsional potential functions Vt(φ) and Vt(ψ) around single bonds N–Cα and Cα-C, which can be used in conformational studies of oligopeptides, polypeptides and proteins, have been derived, using crystal structure data of 22 globular proteins, fitting the observed distribution in the (φ, ψ)-plane with the value of Vtot(φ, ψ), using the Boltzmann distribution. The averaged torsional potential functions, obtained from various amino acid residues in l-configuration, are Vt(φ) = – 1.0 cos (φ + 60°); Vt(ψ) = – 0.5 cos (ψ + 60°) – 1.0 cos (2ψ + 30°) – 0.5 cos (3ψ + 30°). The dipeptide energy maps Vtot(φ, ψ) obtained using these functions, instead of the normally accepted torsional functions, were found to explain various observations, such as the absence of the left-handed alpha helix and the C7 conformation, and the relatively high density of points near the line ψ = 0°. These functions, derived from observational data on protein structures, will, it is hoped, explain various previously unexplained facts in polypeptide conformation.
Resumo:
Dendrite Pd with corrugated surfaces, obtained by a novel AC technique, exhibits an exceptionally high catalytic activity for the oxidation of formic acid because of the presence of a high density of surface steps. The formation of twinned dendrites leads to a predominance of exposed 111 facets with a high density of surface steps as evident from high resolution electron microscopy investigations. These surface sites provide active sites for the absorption of the formic acid molecules, thereby enhancing the reaction rate. Control experiments by varying the time of deposition reveal the formation of partially grown dendrites at shorter times indicating that the dendrites were formed by growth rather than particle attachment. Our deposition method opens up interesting possibilities to produce artisotropic nanostructures with corrugated surfaces by exploiting the perturbations involved in the growth process.
Resumo:
Cationic amino acid transporters (mCAT1 and mCAT2B) regulate the arginine availability in macrophages. How in the infected cell a pathogen can alter the arginine metabolism of the host remains to be understood. We reveal here a novel mechanism by which Salmonella exploit mCAT1 and mCAT2B to acquire host arginine towards its own intracellular growth within antigen presenting cells. We demonstrate that Salmonella infected bone marrow derived macrophages and dendritic cells show enhanced arginine uptake and increased expression of mCAT1 and mCAT2B. We show that the mCAT1 transporter is in close proximity to Salmonella containing vacuole (SCV) specifically by live intracellular Salmonella in order to access the macrophage cytosolic arginine pool. Further, Lysosome associated membrane protein 1, a marker of SCV, also was found to colocalize with mCAT1 in the Salmonella infected cell. The intra vacuolar Salmonella then acquire the host arginine via its own arginine transporter, ArgT for growth. The argT knockout strain was unable to acquire host arginine and was attenuated in growth in both macrophages and in mice model of infection. Together, these data reveal survival strategies by which virulent Salmonella adapt to the harsh conditions prevailing in the infected host cells.
Resumo:
Crystals of dl-arginine hemisuccinate dihydrate (I)(monoclinic; P21/c; a = 5.292, b = 16.296, c = 15.203 Å; α= 92.89°; Z = 4) and l-arginine hemisuccinate hemisuccinic acid monohydrate (II) (triclinic; P1; a = 5.099; b = 10.222, c = 14.626 Å; α= 77.31, β= 89.46, γ= 78.42°; Z = 2) were grown under identical conditions from aqueous solutions of the components in molar proportions. The structures were solved by direct methods and refined to R = 0.068 for 2585 observed reflections in the case of (I) and R = 0.036 for 2154 observed reflections in the case of (11). Two of the three crystallographically independent arginine molecules in the complexes have conformations different from those observed so far in the crystal structures containing arginine. The succinic acid molecules and the succinate ions in the structures are centrosymmetric and planar. The crystal structure of (II) is highly pseudosymmetric. Arginine-succinate interactions in both the complexes involve specific guanidyl-carboxylate interactions. The basic elements of aggregation in both the structures are ribbons made up of alternating arginine dimers and succinate ions. However, the ribbons pack in different ways in the two structures. (II) presents an interesting case in which two ionisation states of the same molecule coexist in a crystal. The two complexes provide a good example of the effect of change in chirality on stoichiometry, conformation, aggregation, and ionisation state in the solid state.
Resumo:
DL-Proline hemisuccinic acid, C5H9NO2.1/2C4H6O4, M(r) = 174.2, P2(1/c) a = 5.254 (1), b = 17.480 (1), c = 10.230 (i) angstrom, beta = 119.60 (6)-degrees Z = 4, D(m) = 1.41 (4), D(x) = 1.42 g cm-3, R = 0.045 for 973 observed reflections. Glycyl-L-histidinium semisuccinate monohydrate, C8H13N4O3+.C4H5O4-.H2O, M(r) = 348.4, P2(1), a = 4.864 (1), b = 17.071 (2), c = 9.397 (1) angstrom, beta = 90.58-degrees, Z = 2, D(m) = 1.45 (1), D(x) = 1.48 g cm-3, R = 0.027 for 1610 observed reflections. Normal amino-acid and dipeptide aggregation patterns are preserved in the structures in spite of the presence of succinic acid/semisuccinate ions. In both the structures, the amino-acid/dipeptide layers stack in such a way that the succinic acid molecules/semisuccinate ions are enclosed in voids created during stacking. Substantial variability in the ionization state and the stoichiometry is observed in amino-acid and peptide complexes of succinic acid. Succinic acid molecules and succinate ions appear to prefer a planar centro-symmetric conformation with the two carboxyl (carboxylate) groups trans with respect to the central C=C bond. Considerable variation is seen in the departure from and modification of normal amino-acid aggregation patterns produced by the presence of succinic acid. Some of the complexes can be described as inclusion compounds with the amino acid/dipeptide as the 'host' and succinic acid/semisuccinate/succinate as the 'guest'. The effects of change in chirality, though very substantial, are not the same in different pairs of complexes involving DL and L isomers of the same amino acid.
Resumo:
Supercritical carbon dioxide is used to prepare aerogels of two reference molecular organogelators, 2,3-bis-n-decyloxyanthracene (DDOA) (luminescent molecule) and 12-hydroxystearic acid (HSA). Electron microscopy reveals the fibrillar morphology of the aggregates generated by the protocol. SAXS and SANS measurements show that DDOA aerogels are crystalline materials exhibiting three morphs: (1) arrangements of the crystalline solid (2D p6m), (2) a second hexagonal morph slightly more compact, and (3) a packing specific of the fibers in the gel. Aggregates specific of the aerogel (volume fraction being typically phi approximate to 0.60) are developed over larger distances (similar to 1000 angstrom) and bear fewer defaults and residual strains than aggregates in the crystalline and gel phases. Porod, Scherrer and Debye-Bueche analyses of the scattering data have been performed. The first five diffraction peaks show small variations in position and intensity assigned to the variation of the number of fibers and their degree of vicinity within hexagonal bundles of the related SAFIN according to the Oster model. Conclusions are supported by the guidelines offered by the analysis of the situation in HSA aerogels for which the diffraction pattern can be described by two coexisting lamellar-like arrangements. The porosity of the aerogel, as measured by its specific surface extracted from the scattering invariant analysis, is only 1.8 times less than that of the swollen gel and is characteristic of a very porous material.