886 resultados para 710701 Electricity, gas and water services and utilities


Relevância:

100.00% 100.00%

Publicador:

Resumo:

India needs to significantly increase its electricity consumption levels, in a sustainable manner, if it has to ensure rapid economic development, a goal that remains the most potent tool for delivering adaptation capacity to its poor who will suffer the worst consequences of climate change. Resource/supply constraints faced by conventional energy sources, techno-economic constraints faced by renewable energy sources, and the bounds imposed by climate change on fossil fuel use are likely to undermine India's quest for having a robust electricity system that can effectively contribute to achieving accelerated, sustainable and inclusive economic growth. One possible way out could be transitioning into a sustainable electricity system, which is a trade-off solution having taken into account the economic, social and environmental concerns. As a first step toward understanding this transition, we contribute an indicator based hierarchical multidimensional framework as an analytical tool for sustainability assessment of electricity systems, and validate it for India's national electricity system. We evaluate Indian electricity system using this framework by comparing it with a hypothetical benchmark sustainable electrical system, which was created using best indicator values realized across national electricity systems in the world. This framework, we believe, can be used to examine the social, economic and environmental implications of the current Indian electricity system as well as setting targets for future development. The analysis with the indicator framework provides a deeper understanding of the system, identify and quantify the prevailing sustainability gaps and generate specific targets for interventions. We use this framework to compute national electricity system sustainability index (NESSI) for India. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large-scale production of hydrogen gas by water electrolysis is hindered by the sluggish kinetics of oxygen evolution reaction (OER) at the anode. The development of a highly active and stable catalyst for OER is a challenging task. Electrochemically prepared amorphous metal-based catalysts have gained wide attention after the recent discovery of a cnbalt-phosphate (Co-Pi) catalyst: Herein, an amorphous iridium-phosphate (Ir-Pi) is investigated as an oxygen evolution catalyst. The catalyst is prepared by the anodic polarization of carbon paper electrodes in neutral phosphate buffer solutions containing IrCl3. The Ir-Pi film deposited on the substrate has significant amounts of phosphate and It centers in an oxidation state higher than +4. Phosphate plays a significant role in the deposition of the catalyst and also in its activity toward OER. The onset potential of OER on the Ir-Pi is about 150 mV lower in comparison with the Co-Pi under identical experimental conditions. Thus, Ir-Pi is a promising catalyst for electrochemical oxidation of water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high-speed combustible gas ignited by a hot gas jet, which is induced by shock focusing, was experimentally investigated. By use of the separation mode of shock tube, the test section of a single shock tube is split into two parts, which provide the high-speed flow of combustible gas and pilot flame of hot gas jet, respectively. In the interface of two parts of test sections the flame of jet was formed and spread to the high-speed combustible gas. Two kinds of the ignitions, 3-D “line-flame ignition” and 2-D “plane-flame ignition”, were investigated. In the condition of 3-D “lineflame ignition” of combustion, thicker hot gas jet than pure air jet, was observed in schlieren photos. In the condition of 2-D “plane-flame ignition” of combustion, the delay time of ignition and the angle of flame front in schlieren photos were measured, from which the velocity of flame propagation in the high-speed combustible gas is estimated in the range of 30–90 m/s and the delay time of ignition is estimated in the range of 0.12–0.29 ms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper contains a detailed study of shock wave reflection from a wedge placed in various suspensions. In past works, the incident shock propagated initially in pure gas and the suspension started only at the leading edge of the deflecting wedge. However, in the present case the entire flow field is filled with a gas-dust suspension and the initial shock wave has steady-state structure relative to the shock front. In former studies the transmitted shock wave starts its propagation into the suspension and is reflected from the wedge at the same time. It is therefore obvious that the two unrelated processes of (2D) reflection and (1D) "transitional" relaxation occur simultaneously. In the present case the suspension behind the incident shock wave has reached steady state (i.e., it is a traveling wave) before the shock reaches the wedge leading edge. The reflection process from the deflecting wedge is studied for different dust mass loadings and different dust-particle diameter. It is shown that when the dust loading is low and the dust particle diameter is small the wave reflection pattern is similar to that observed in a similar pure gas case. In addition, an equilibrium state is reached, behind the evolved waves, very quickly. On the other hand, when the dust loading is relatively high and/or the dust particle diameter is relatively large, the observed reflection wave pattern is very different from that seen in a similar pure gas case. In such cases it takes much longer time to reach an equilibrium state behind the reflecting waves. It is also shown that the dust presence significantly affects the (gas) pressure on the wedge surface. The higher the dust loading is, the higher the pressure on the wedge surface. Suspensions composed of solid particle of different size, but having the same dust mass loading, will approach the same equilibrium pressure. However, it will take longer time to reach an equilibrium state for suspensions having large diameter particles. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper describes a numerical two-way coupling model for shock-induced laminar boundary-layer flows of a dust-laden gas and studies the transverse migration of fine particles under the action of Saffman lift force. The governing equations are formulated in the dilute two-phase continuum framework with consideration of the finiteness of the particle Reynolds and Knudsen numbers. The full Lagrangian method is explored for calculating the dispersed-phase flow fields (including the number density of particles) in the regions of intersecting particle trajectories. The computation results show a significant reaction of the particles on the two-phase boundary-layer structure when the mass loading ratio of particles takes finite values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The compressible laminar boundary-layer flows of a dilute gas-particle mixture over a semi-infinite flat plate are investigated analytically. The governing equations are presented in a general form where more reasonable relations for the two-phase interaction and the gas viscosity are included. The detailed flow structures of the gas and particle phases are given in three distinct regions : the large-slip region near the leading edge, the moderate-slip region and the small-slip region far downstream. The asymptotic solutions for the two limiting regions are obtained by using a seriesexpansion method. The finite-difference solutions along the whole length of the plate are obtained by using implicit four-point and six-point schemes. The results from these two methods are compared and very good agreement is achieved. The characteristic quantities of the boundary layer are calculated and the effects on the flow produced by the particles are discussed. It is found that in the case of laminar boundary-layer flows, the skin friction and wall heat-transfer are higher and the displacement thickness is lower than in the pure-gas case alone. The results indicate that the Stokes-interaction relation is reasonable qualitatively but not correct quantitatively and a relevant non-Stokes relation of the interaction between the two phases should be specified when the particle Reynolds number is higher than unity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coal-fired power plants may enjoy a significant advantage relative to gas plants in terms of cheaper fuel cost. Still, this advantage may erode or even turn into disadvantage depending on CO2 emission allowance price. This price will presumably rise in both the Kyoto Protocol commitment period (2008-2012) and the first post-Kyoto years. Thus, in a carbon-constrained environment, coal plants face financial risks arising in their profit margins, which in turn hinge on their so-called "clean dark spread". These risks are further reinforced when the price of the output electricity is determined by natural gas-fired plants' marginal costs, which differ from coal plants' costs. We aim to assess the risks in coal plants' margins. We adopt parameter values estimated from empirical data. These in turn are derived from natural gas and electricity markets alongside the EU ETS market where emission allowances are traded. Monte Carlo simulation allows to compute the expected value and risk profile of coal-based electricity generation. We focus on the clean dark spread in both time periods under different future scenarios in the allowance market. Specifically, bottom 5% and 10% percentiles are derived. According to our results, certain future paths of the allowance price may impose significant risks on the clean dark spread obtained by coal plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high-speed combustible gas ignited by a hot gas jet, which is induced by shock focusing, was experimentally investigated. By use of the separation mode of shock tube, the test section of a single shock tube is split into two parts, which provide the high-speed flow of combustible gas and pilot flame of hot gas jet, respectively. In the interface of two parts of test sections the flame of jet was formed and spread to the high-speed combustible gas. Two kinds of the ignitions, 3-D "line-flame ignition" and 2-D "plane-flame ignition", were investigated. In the condition of 3-D "line-flame ignition" of combustion, thicker hot gas jet than pure air jet, was observed in schlieren photos. In the condition of 2-D "plane-flame ignition" of combustion, the delay time of ignition and the angle of flame front in schlieren photos were measured, from which the velocity of flame propagation in the high-speed combustible gas is estimated in the range of 30-90m/s and the delay time of ignition is estimated in the range of 0.12-0.29ms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Submarine Landslides: An Introduction 1 By RIo Lee, W.C. Schwab, and J.S. Booth U.S. Atlantic Continental Slope Landslides: Their Distribution, General Anributes, and Implications 14 By J.S. Booth, D.W. O'Leary, Peter Popenoe, and W.W. Danforth Submarine Mass Movement, a Formative Process of Passive Continental Margins: The Munson-Nygren Landslide Complex and the Southeast New England Landslide Complex 23 By D.W. O'Leary The Cape Fear Landslide: Slope Failure Associated with Salt Diapirism and Gas Hydrate Decomposition 40 By Peter Popenoe, E.A. Schmuck, and W.P. Dillon Ancient Crustal Fractures Control the Location and Size of Collapsed Blocks at the Blake Escarpment, East of Florida 54 By W.P. Dillon, J.S. Risch, K.M. Scanlon, P.C. Valentine, and Q.J. Huggett Tectonic and Stratigraphic Control on a Giant Submarine Slope Failure: Puerto Rico Insular Slope 60 By W.C. Schwab, W.W. Danforth, and K.M. Scanlon Slope Failure of Carbonate Sediment on the West Florida Slope 69 By D.C. Twichell, P.C. Valentine, and L.M. Parson Slope Failures in an Area of High Sedimentation Rate: Offshore Mississippi River Delta 79 By J.M. Coleman, D.B. Prior, L.E. Garrison, and H.J. Lee Salt Tectonics and Slope Failure in an Area of Salt Domes in the Northwestern Gulf of Mexico 92 By B.A. McGregor, R.G. Rothwell, N.H. Kenyon, and D.C. Twichell Slope Stability in Regions 01 Sea-Floor Gas Hydrate: Beaufort Sea Continental Slope 97 By R.E. Kayen and H.J. Lee Mass Movement Related to Large Submarine Canyons Along the Beringian Margin, Alaska 104 By P.R. Carlson, H.A. Karl, B.D. Edwards, J.V. Gardner, and R. Hall Comparison of Tectonic and Stratigraphic Control of Submarine Landslides on the Kodiak Upper Continental Slope, Alaska 117 By M.A. Hampton Submarine Landslides That Had a Significant Impact on Man and His Activities: Seward and Valdez, Alaska 123 By M.A. Hampton, R.W. Lemke, and H.W. Coulter Processes Controlling the Style of Mass Movement in Glaciomarine Sediment: Northeastern Gulf of Alaska 135 By W.C. Schwab and H.J. Lee Contents V VI Contents Liquefaction of Continental Shelf Sediment: The Northern California Earthquake of 1980 143 By M.E. Field A Submarine Landslide Associated with Shallow Sea-Floor Gas and Gas Hydrates off Northern California 151 By M.E. Field and J.H. Barber, Jr. Sur Submarine Landslide, a Deep-Water Sediment Slope Failure 158 By C.E. Gutmacher and W.R. Normark Seismically Induced Mudflow in Santa Barbara Basin, California 167 By B.D. Edwards, H.J. Lee, and M.E. Field Submarine Landslides in a Basin and Ridge Setting, Southern California 176 By M.E. Field and B.D. Edwards Giant Volcano-Related Landslides and the Development of the Hawaiian Islands 184 By W.R. Normark, J.G. Moore, and M.E. Torresan Submarine Slope Failures Initiated by Hurricane Iwa, Kahe Point, Oahu, Hawaii 197 By W.R. Normark, Pat Wilde, J.F. Campbell, T.E. Chase, and Bruce Tsutsui (PDF contains 210 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Alliance for Coastal Technology (ACT) convened a workshop on the in situ measurement of dissolved inorganic carbon species in natural waters in Honolulu, Hawaii, on February 16, 17, and 18, 2005. The workshop was designed to summarize existing technologies for measuring the abundance and speciation of dissolved inorganic carbon and to make strategic recommendations for future development and application of these technologies to coastal research and management. The workshop was not focused on any specific technology, however, most of the attention of the workshop was on in situ pC02 sensors given their recent development and use on moorings for the measurement of global carbon fluxes. In addition, the problems and limitations arising from the long-term deployment of systems designed for the measurement of pH, total dissolved inorganic carbon (DIC), and total alkalinity (TA) were discussed. Participants included researchers involved in carbon biogeochemistry, industry representatives, and coastal resource managers. The primary questions asked during the workshop were: I. What are the major impediments to transform presently used shipboard pC02 measurement systems for use on cost-eficient moorings? 2. What are the major technical hurdles for the in situ measurement of TA and DIC? 3. What specific information do we need to coordinate efforts for proof of concept' testing of existing and new technologies, inter-calibration of those technologies, better software development, and more precise knowledge quantzjjing the geochemistry of dissolved inoeanic carbon species in order to develop an observing system for dissolved inorganic carbon? Based on the discussion resulting from these three questions, the following statements were made: Statement No. 1 Cost-effective, self-contained technologies for making long-term, accurate measurements of the partial pressure of C02 gas in water already exist and at present are ready for deployment on moorings in coastal observing systems. Statement No. 2 Cost-effective, self-contained systems for the measurement of pH, TA, and DIC are still needed to both fully define the carbonate chemistry of coastal waters and the fluxes of carbon between major biogeochemical compartments (e.g., air-sea, shelf-slope, water column-sediment, etc.). (pdf contains 23 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[ES]Este proyecto comprende la realización de un estudio de optimización mediante análisis técnico-económico del sistema de refrigeración de una planta termosolar de colectores cilindroparabólicos. Se incluye una exposición descriptiva de la planta y el sistema de agua de circulación y condensado. El estudio técnico-económico se apoya en la realización de los balances térmicos variando los parámetros dimensionantes relativos a dicho sistema mediante el software Thermoflex, partiendo del valor de estos que proporciona la potencia nominal de la planta. Se calcula la producción eléctrica diferencial e inversión diferencial de cada alternativa de dimensionamiento del sistema, calculándose la rentabilidad económica para cada caso. Se refleja también el cambio legislativo sucedido en cuanto al precio de venta de la electricidad y como afecta éste en la rentabilidad de cada caso. De esta forma se seleccionará la solución óptima y se extraerán las conclusiones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trace volatile organic compounds emitted by biogenic and anthropogenic sources into the atmosphere can undergo extensive photooxidation to form species with lower volatility. By equilibrium partitioning or reactive uptake, these compounds can nucleate into new aerosol particles or deposit onto already-existing particles to form secondary organic aerosol (SOA). SOA and other atmospheric particulate matter have measurable effects on global climate and public health, making understanding SOA formation a needed field of scientific inquiry. SOA formation can be done in a laboratory setting, using an environmental chamber; under these controlled conditions it is possible to generate SOA from a single parent compound and study the chemical composition of the gas and particle phases. By studying the SOA composition, it is possible to gain understanding of the chemical reactions that occur in the gas phase and particle phase, and identify potential heterogeneous processes that occur at the surface of SOA particles. In this thesis, mass spectrometric methods are used to identify qualitatively and qualitatively the chemical components of SOA derived from the photooxidation of important anthropogenic volatile organic compounds that are associated with gasoline and diesel fuels and industrial activity (C12 alkanes, toluene, and o-, m-, and p-cresols). The conditions under which SOA was generated in each system were varied to explore the effect of NOx and inorganic seed composition on SOA chemical composition. The structure of the parent alkane was varied to investigate the effect on the functionalization and fragmentation of the resulting oxidation products. Relative humidity was varied in the alkane system as well to measure the effect of increased particle-phase water on condensed-phase reactions. In all systems, oligomeric species, resulting potentially from particle-phase and heterogeneous processes, were identified. Imines produced by reactions between (NH4)2SO4 seed and carbonyl compounds were identified in all systems. Multigenerational photochemistry producing low- and extremely low-volatility organic compounds (LVOC and ELVOC) was reflected strongly in the particle-phase composition as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An attempt is made to provide a theoretical explanation of the effect of the positive column on the voltage-current characteristic of a glow or an arc discharge. Such theories have been developed before, and all are based on balancing the production and loss of charged particles and accounting for the energy supplied to the plasma by the applied electric field. Differences among the theories arise from the approximations and omissions made in selecting processes that affect the particle and energy balances. This work is primarily concerned with the deviation from the ambipolar description of the positive column caused by space charge, electron-ion volume recombination, and temperature inhomogeneities.

The presentation is divided into three parts, the first of which involved the derivation of the final macroscopic equations from kinetic theory. The final equations are obtained by taking the first three moments of the Boltzmann equation for each of the three species in the plasma. Although the method used and the equations obtained are not novel, the derivation is carried out in detail in order to appraise the validity of numerous approximations and to justify the use of data from other sources. The equations are applied to a molecular hydrogen discharge contained between parallel walls. The applied electric field is parallel to the walls, and the dependent variables—electron and ion flux to the walls, electron and ion densities, transverse electric field, and gas temperature—vary only in the direction perpendicular to the walls. The mathematical description is given by a sixth-order nonlinear two-point boundary value problem which contains the applied field as a parameter. The amount of neutral gas and its temperature at the walls are held fixed, and the relation between the applied field and the electron density at the center of the discharge is obtained in the process of solving the problem. This relation corresponds to that between current and voltage and is used to interpret the effect of space charge, recombination, and temperature inhomogeneities on the voltage-current characteristic of the discharge.

The complete solution of the equations is impractical both numerically and analytically, and in Part II the gas temperature is assumed uniform so as to focus on the combined effects of space charge and recombination. The terms representing these effects are treated as perturbations to equations that would otherwise describe the ambipolar situation. However, the term representing space charge is not negligible in a thin boundary layer or sheath near the walls, and consequently the perturbation problem is singular. Separate solutions must be obtained in the sheath and in the main region of the discharge, and the relation between the electron density and the applied field is not determined until these solutions are matched.

In Part III the electron and ion densities are assumed equal, and the complicated space-charge calculation is thereby replaced by the ambipolar description. Recombination and temperature inhomogeneities are both important at high values of the electron density. However, the formulation of the problem permits a comparison of the relative effects, and temperature inhomogeneities are shown to be important at lower values of the electron density than recombination. The equations are solved by a direct numerical integration and by treating the term representing temperature inhomogeneities as a perturbation.

The conclusions reached in the study are primarily concerned with the association of the relation between electron density and axial field with the voltage-current characteristic. It is known that the effect of space charge can account for the subnormal glow discharge and that the normal glow corresponds to a close approach to an ambipolar situation. The effect of temperature inhomogeneities helps explain the decreasing characteristic of the arc, and the effect of recombination is not expected to appear except at very high electron densities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is a study of nonlinear phenomena in the propagation of electromagnetic waves in a weakly ionized gas externally biased with a magnetostatic field. The present study is restricted to the nonlinear phenomena rising from the interaction of electromagnetic waves in the ionized gas. The important effects of nonlinearity are wave-form distortion leads to cross modulation of one wave by a second amplitude-modulated wave.

The nonlinear effects are assumed to be small so that a perturbation method can be used. Boltzmann’s kinetic equation with an appropriate expression for the collision term is solved by expanding the electron distribution function into spherical harmonics in velocity space. In turn, the electron convection current density and the conductivity tensors of the nonlinear ionized gas are found from the distribution function. Finally, the expression for the current density and Maxwell’s equations are employed to investigate the effects of nonlinearity on the propagation of electromagnetic waves in the ionized gas, and also on the reflection of waves from an ionized gas of semi-infinite extent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Casa da Moeda do Brasil (CMB) é uma empresa nacional, com mais de 300 anos de experiência na produção de valores e impressos de segurança. A produção de cédulas, realizada pelo Departamento de Cédulas (DECED), consiste de três etapas de impressão, off-set, calografia e tipografia, seguida de acabamento e embalagem semi-automatizado. A impressão calcográfica consome solução de limpeza, composta de soda cáustica e óleo sulfonado, para limpeza do cilindro de impressão, gerando um efluente líquido saturado de tinta. Este efluente apresenta baixa biodegradabilidade, apresentando uma relação DBO / DQO de aproximadamente 1:4. Em termos de tratabilidade, as estações de tratamento de efluentes (ETE) apresentam uma configuração convencional, por via biológica, demonstram pouca eficiência na degradação da matéria orgânica deste efluente. Com compostos recalcitrantes, torna-se necessária a inclusão de uma etapa terciária que permita sua degradação por via química, permitindo o descarte do efluente com características menos danosas ao ambiente. Neste trabalho, aplicou-se a reação de Fenton no efluente do DECED por sua capacidade de converter a matéria orgânica em gás carbônico e água ou, caso seja utilizado em pré-tratamentos, torna-os biodegradáveis. Foram estudadas diferentes condições para medir a influência de diferentes parâmetros na eficiência da reação. A reação de Fenton consiste na geração de radicais hidroxil (HO), por diferentes rotas, em quantidades suficientes para a degradação de matéria orgânica. Esses radicais são gerados a partir de peróxido de hidrogênio (H2O2) em reações com diferentes precursores como ozônio (O3), luz UV (ultravioleta), ultra-som e sais de ferro. No presente trabalho restringiu-se às reações com sais de ferro. Dentre os resultados obtidos, verificou-se o tempo mínimo para reação em 10 minutos. A relação entre íons ferro e peróxido de hidrogênio é menor do que a literatura normalmente sugere, 1:2, contra 1:3. Como a solução de sulfato ferroso é muito instável, passando os íons ferrosos a férricos, utilizou-se a adição direta do sal. Em escala industrial, a solução de sulfato ferroso deve ser preparada em poucas quantidades para que tenha baixo tempo de estocagem, a fim de não ser degradada. A temperatura, na faixa estudada (de 20C à 45C), é um parâmetro que tem pouca influência, pois a redução da eficiência da reação foi pequena (de 99,0% para 94,9%). O ferro utilizado na reação não se demonstrou uma nova fonte de transtornos para o ambiente. Nas condições utilizadas, a concentração de ferro residual esteve próxima ao limite permitido pela legislação no efluente tratado, necessitando apenas de alguns ajustes para a correção do problema