971 resultados para 5-HT(1A) receptor ligands
Resumo:
Cassette mutagenesis was used to identify side chains in human interleukin 5 (hIL-5) that mediate binding to hIL-5 receptor alpha chain (hIL-5R alpha). A series of single alanine substitutions was introduced into a stretch of residues in the C-terminal region, including helix D, which previously had been implicated in receptor alpha chain recognition and which is aligned on the IL-5 surface so as to allow the topography of receptor binding residues to be examined. hIL-5 and single site mutants were expressed in COS cells, their interactions with hIL-5R alpha were measured by a sandwich surface plasmon resonance biosensor method, and their biological activities were measured by an IL-5-dependent cell proliferation assay. A pattern of mutagenesis effects was observed, with greatest impact near the interface between the two four-helix bundles of IL-5, in particular at residues Glu-110 and Trp-111, and least at the distal ends of the D helices. This pattern suggests the possibility that residues near the interface of the two four-helix bundles in hIL-5 comprise a central patch or hot spot, which constitutes an energetically important alpha chain recognition site. This hypothesis suggests a structural explanation for the 1:1 stoichiometry observed for the complex of hIL-5 with hIL-5R alpha.
Resumo:
Agonists stimulate guanylyl 5'-[gamma-[35S]thio]-triphosphate (GTP[gamma-35S]) binding to receptor-coupled guanine nucleotide binding protein (G proteins) in cell membranes as revealed in the presence of excess GDP. We now report that this reaction can be used to neuroanatomically localize receptor-activated G proteins in brain sections by in vitro autoradiography of GTP[gamma-35S] binding. Using the mu opioid-selective peptide [D-Ala2,N-MePhe4,Gly5-ol]enkephalin (DAMGO) as an agonist in rat brain sections and isolated thalamic membranes, agonist stimulation of GTP[gamma-35S] binding required the presence of excess GDP (1-2 mM GDP in sections vs. 10-30 microM GDP in membranes) to decrease basal G-protein activity and reveal agonist-stimulated GTP[gamma-35S] binding. Similar concentrations of DAMGO were required to stimulate GTP[gamma-35S] binding in sections and membranes. To demonstrate the general applicability of the technique, agonist-stimulated GTP[gamma-35S] binding in tissue sections was assessed with agonists for the mu opioid (DAMGO), cannabinoid (WIN 55212-2), and gamma-aminobutyric acid type B (baclofen) receptors. For opioid and cannabinoid receptors, agonist stimulation of GTP[gamma-35S] binding was blocked by incubation with agonists in the presence of the appropriate antagonists (naloxone for mu opioid and SR-141716A for cannabinoid), thus demonstrating that the effect was specifically receptor mediated. The anatomical distribution of agonist-stimulated GTP[gamma-35S] binding qualitatively paralleled receptor distribution as determined by receptor binding autoradiography. However, quantitative differences suggest that variations in coupling efficiency may exist between different receptors in various brain regions. This technique provides a method of functional neuroanatomy that identifies changes in the activation of G proteins by specific receptors.
Resumo:
Antigen-specific activation of T lymphocytes, via stimulation of the T-cell antigen receptor (TCR) complex, is marked by a rapid and sustained increase in the concentration of cytoplasmic free Ca2+ ([Ca2+]i). It has been suggested that the second messenger inositol 1,4,5-trisphosphate (IP3) produced after TCR stimulation binds to the IP3 receptor (IP3R), an intracellular Ca(2+)-release channel, and triggers the increase in [Ca2+]i that activates transcription of the gene for T-cell growth factor interleukin 2 (IL-2). However, the role of the IP3R in T-cell signaling and possibly in plasma membrane Ca2+ influx in T cells remains unproven. Stable transfection of T cells (Jurkat) with antisense type 1 IP3R cDNA prevented type 1 IP3R expression, providing a tool for dissecting the role of IP3 signaling during T-cell activation. T cells lacking type 1 IP3R failed to increase [Ca2+]i or produce IL-2 after TCR stimulation. Moreover, depletion of intracellular Ca2+ stores without TCR activation stimulated Ca2+ influx in cells lacking the type 1 IP3R. These results establish that the type 1 IP3R is required for intracellular Ca2+ release that triggers antigen-specific T-cell proliferation but not for plasma membrane Ca2+ influx.
Resumo:
A detailed structure-function analysis of human interleukin 5 (hIL5) has been performed. The hIL5 receptor is composed of two different polypeptide chains, the alpha and beta subunits. The alpha subunit alone is sufficient for ligand binding, but association with the beta subunit leads to a 2- to 3-fold increase in binding affinity. The beta chain is shared with the receptors for IL3 and granulocyte/macrophage-colony-stimulating factor--hence the descriptor beta C (C for common). All hIL5 mutants were analyzed in a solid-phase binding assay for hIL5R alpha interaction and in a proliferation assay using IL5-dependent cell lines for receptor-complex activation. Most residues affecting binding to the receptor alpha subunit were clustered in a loop connecting beta-strand 1 and helix B (mutants H38A, K39A, and H41A), in beta-strand 2 (E89A and R91A; weaker effect for E90A) and close to the C terminus (T109A, E110A, W111S, and I112A). Mutations at one position, E13 (Glu13), caused a reduced activation of the hIL5 receptor complex. In the case of E13Q, only 0.05% bioactivity was detected on a hIL5-responsive subclone of the mouse promyelocytic cell line FDC-P1. Moreover, on hIL5-responsive TF1 cells, the same mutant was completely inactive and proved to have antagonistic properties. Interactions of this mutant with both receptor subunits were nevertheless indistinguishable from those of nonmutated hIL5 by crosslinking and Scatchard plot analysis of transfected COS-1 cells.
Resumo:
Immunoprophylactic products against neosporosis during pregnancy should induce an appropriately balanced immune response. In this respect, OprI, a bacterial lipoprotein targeting toll like receptor (TLR)2, provides promising adjuvant properties. We report on the manipulation of the innate and the T-cell immune response through the fusion of OprI with the Neospora caninum chimeric protein Mic3-1-R. In contrast to Mic3-1-R, OprI-MIC3-1-R significantly activated bone-marrow dendritic cells from naïve mice. Mice immunized with OprI-Mic3-1-R induced an immune response with mixed T helper (Th)1 and Th2 properties (high levels of both immunoglobulin (Ig)G1 and IgG2a and of interleukin (IL)-10, IL-12(p70) and interferon-γ responses) whereas Mic3-1-R+saponin induced a clear Th2-biased response (low IgG2a and high IL-4 and IL-10). After mating and challenge with N. caninum, increased expression of interferon-γ was only found in placentas from OprI-Mic3-1-R immunized dams. However, no protection against vertical transmission and neonatal mortality was observed in either of the two groups. These results indicated that more exhaustive studies must be done to elucidate the immune mechanisms associated with transplacental transmission. Antigen linkage to TLR2-ligands, such as OprI, is a useful tool to investigate this enigma by reorienting the innate and adaptive immune responses against other candidate antigens in future studies.
Resumo:
Covers the period 1884 to 1906.
Resumo:
Migraine is a common complex disorder, currently classified into two main subtypes, migraine with aura (MA) and migraine without aura (MO). The strong preponderance of females to males suggests an X-linked genetic component. Recent studies have identified an X chromosomal susceptibility region (Xq24-q28) in two typical migraine pedigrees. This region harbours a potential candidate gene for the disorder, the serotonin receptor 2C (5-HT2C) gene. This study involved a linkage and association approach to investigate two single nucleotide variants in the 5-HT2C gene. In addition, exonic coding regions of the 5-HT2C gene were also sequenced for mutations in X-linked migraine pedigrees. Results of this study did not detect any linkage or association, and no disease causing mutations were identified. Hence, results for this study do not support a significant role of the 5-HT2C gene in migraine predisposition. (C) 2003 Wiley-Liss, Inc.
Resumo:
We present evidence of complex balancing regulation of HTR1B transcription by common polymorphisms in its promoter. Computational analysis of the HTR1B gene predicted that a 50 segment, spanning common DNA sequence variations, T-261G, A-161T, and -182INS/DEL-181, contained a putative functional promoter. Using a secreted alkaline phosphatase (SEAP) reporter gene system, we found that the haplotype -261G_-182INS-181_A-161 enhanced transcriptional activity 2.3-fold compared with the haplotype T-261_-182INS-181_A-161. Conversely, -161T reversed this, and the net effect when -261G and -161T were in the same haplotype (-261G_-182INS-181_-161T) was equivalent to the major haplotype (T-261_-182INS-181_A-161). Electrophoretic mobility shift experiments showed that -261G and -161T modify the binding of transcription factors (TFs): -261G generates a new AP2 binding site, while alleles A-161 and -161T exhibit different binding characteristics to AP1. T-261G and A-161T were found to be in linkage disequilibrium (LD) with G861C in a European ancestry population. Interestingly, G861C has been reported to be associated with several psychiatric disorders. Our results indicate that HTR1B is the target of substantial transcriptional genetic regulation by common haplotypes, which are in LD with the HTR1B single-nucleotide polymorphism (SNP) most commonly used in association studies.
Resumo:
Interaction of Eph receptor tyrosine kinases with their membrane bound ephrin ligands initiates bidirectional signaling events that regulate cell migratory and adhesive behavior. Whole-mount in situ hybridization revealed overlapping expression of the Epha1 receptor and its high-affinity ligands ephrin A1 (Efna1) and ephrin A3 (Efna3) in the primitive streak and the posterior paraxial mesoderm during early mouse development. These results show complex and dynamic expression for all three genes with expression domains that are successively complementary, overlapping, and divergent. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The purpose of the present study was to determine antipsychotic doses that achieve 80% striatal doparnine D-2-receptor occupancy for haloperidol, risperidone and olanzapine in rats. Wistar rats were treated with normal saline vehicle (controls), haloperidol (0.25 and 0.5 mg/kg/ day), risperidone (3, 5 and 6 mg/kg/day) and olanzapine (5 and 10 mg/kg/day) for 7 days via osmotic minipumps. Striatal and cerebellar tissue were collected and in vivo dopamine D2-receptor occupancies were determined using H-3-raclopride. The doses required to achieve dopamine D-2-receptor occupancy of 80% in 11- and 24-week old rats were: haloperidol 0.25 mg/kg/day, risperidone 5 mg/kg/day and olanzapine 10 mg/kg/day. (c) 2006 Elsevier B.V All rights reserved.
Resumo:
The generation of reactive oxygen species is a central feature of inflammation that results in the oxidation of host phospholipids. Oxidized phospholipids, such as 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (OxPAPC), have been shown to inhibit signaling induced by bacterial lipopeptide or lipopolysac-charide (LPS), yet the mechanisms responsible for the inhibition of Toll-like receptor (TLR) signaling by OxPAPC remain incompletely understood. Here, we examined the mechanisms by which OxPAPC inhibits TLR signaling induced by diverse ligands in macrophages, smooth muscle cells, and epithelial cells. OxPAPC inhibited tumor necrosis factor- production, IB degradation, p38 MAPK phosphorylation, and NF-B-dependent reporter activation induced by stimulants of TLR2 and TLR4 (Pam3CSK4 and LPS) but not by stimulants of other TLRs (poly(I·C), flagellin, loxoribine, single-stranded RNA, or CpG DNA) in macrophages and HEK-293 cells transfected with respective TLRs and significantly reduced inflammatory responses in mice injected subcutaneously or intraperitoneally with Pam3CSK4. Serum proteins, including CD14 and LPS-binding protein, were identified as key targets for the specificity of TLR inhibition as supplementation with excess serum or recombinant CD14 or LBP reversed TLR2 inhibition by OxPAPC, whereas serum accessory proteins or expression of membrane CD14 potentiated signaling via TLR2 and TLR4 but not other TLRs. Binding experiments and functional assays identified MD2 as a novel additional target of OxPAPC inhibition of LPS signaling. Synthetic phospholipid oxidation products 1-palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine and 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine inhibited TLR2 signaling from 30 µM. Taken together, these results suggest that oxidized phospholipid-mediated inhibition of TLR signaling occurs mainly by competitive interaction with accessory proteins that interact directly with bacterial lipids to promote signaling via TLR2 or TLR4.
Resumo:
Background and purpose - The N-terminus of calcitonin gene-related peptide (CGRP) is important for receptor activation, especially the disulphide-bonded ring (residues 1-7). However, the roles of individual amino acids within this region have not been examined and so the molecular determinants of agonism are unknown. This study has examined the role of residues 1, 3-6 and 8-9, excluding Cys-2 and Cys-7. Experimental approach - CGRP derivatives were substituted with either cysteine or alanine; further residues were introduced at position 6. Their affinity was measured by radioligand binding and their efficacy by measuring cAMP production in SK-N-MC cells and ß-arrestin 2 translocation in CHO-K1 cells at the CGRP receptor. Key results - Substitution of Ala-5 by cysteine reduced affinity 270-fold and reduced efficacy for production of cAMP in SK-N-MCs. Potency at ß-arrestin translocation was reduced by 9-fold. Substitution of Thr-6 by cysteine destroyed all measurable efficacy of both cAMP and ß-arrestin responses; substitution with either alanine or serine impaired potency. Substitutions at positions 1, 4, 8 and 9 resulted in approximately 10-fold reductions in potency at both responses. Similar observations were made at a second CGRP-activated receptor, the AMY1(a) receptor. Conclusions and implications - Ala-5 and Thr-6 are key determinants of agonist activity for CGRP. Ala-5 is also very important for receptor binding. Residues outside of the 1-7 ring also contribute to agonist activity.
Resumo:
In the ciliate Paramecium, a variety of well characterized processes are regulated by Ca2+, e.g. exocytosis, endocytosis and ciliary beat. Therefore, among protozoa, Paramecium is considered a model organism for Ca2+ signaling, although the molecular identity of the channels responsible for the Ca2+ signals remains largely unknown. We have cloned - for the first time in a protozoan - the full sequence of the gene encoding a putative inositol (1,4,5)-trisphosphate (Ins(1,4,5)P3) receptor from Paramecium tetraurelia cells showing molecular characteristics of higher eukaryotic cells. The homologously expressed Ins(1,4,5)P3-binding domain binds [3H]Ins(1,4,5)P3, whereas antibodies unexpectedly localize this protein to the osmoregulatory system. The level of Ins(1,4,5)P3-receptor expression was reduced, as shown on a transcriptional level and by immuno-staining, by decreasing the concentration of extracellular Ca2+ (Paramecium cells rapidly adjust their Ca2+ level to that in the outside medium). Fluorochromes reveal spontaneous fluctuations in cytosolic Ca2+ levels along the osmoregulatory system and these signals change upon activation of caged Ins(1,4,5)P3. Considering the ongoing expulsion of substantial amounts of Ca2+ by the osmoregulatory system, we propose here that Ins(1,4,5)P3 receptors serve a new function, i.e. a latent, graded reflux of Ca2+ to fine-tune [Ca2+] homeostasis.
Resumo:
ACKNOWLEDGEMENTS We thank J. M. Valverde (IRB) as well as the NMR facilities of the University of Barcelona (CCiT UB) and the Instituto de Química Física Rocasolano (IQFR, CSIC) for their assistance in, respectively, protein production and NMR. This work was supported by IRB, ICREA (X.S.), Obra Social “la Caixa” (Fellowship to E.D.M. and CancerTec grants to X.S.) MICINN (CTQ2009-08850 to X.S.), MINECO (BIO2012-31043 to X.S.; CTQ2014-56361-P to A.R), Marató de TV3 (102030 to X.S. and 102031 to E.E.P) the COFUND programme of the European Commission (C.T.W.P., A. R. and X.S.), the European Research Council (CONCERT, contract number 648201, to X.S.), the Ramón y Cajal program of MICINN (RYC-2011-07873 to C.W.B.) the Serra Hunter Programme (E.E.P.) and AGAUR (SGR-2014-56RR14 to E.E.P). IRB Barcelona is the recipient of a Severo Ochoa Award of Excellence from MINECO (Government of Spain)