861 resultados para 2-YEAR
Resumo:
National Highway Traffic Safety Administration, Accident Investigation Division, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
Appendix (7, [1] p.): Acts passed at the first session of the Ninth Congress.--Senators whose seats will be vacant March 1807, 1809, 1811.
Resumo:
Mode of access: Internet.
Resumo:
1901-1907: 2 nos. a year, the 2d being a summary for the season; 1911-13 published monthly in folio sheets without numbers.
Resumo:
Prepared for Illinois Hazardous Waste Research and Information Center, HWRIC project number 87-005.
Resumo:
Mode of access: Internet.
Resumo:
v.1. An index to the essays, dissertations, and historical passages -- v.2. Indexes to the poetical articles, the names of persons, the plates, and to the books and pamphlets.
Resumo:
Continued by two publications: Psychiatric bulletin of the New York state hospitals, and State hospital quarterly.
Resumo:
Mode of access: Internet.
Resumo:
Analysis of siliceous microfossils of a 79 cm long peat sediment core from Highlands Hammock State Park, Florida, revealed distinct changes in the local hydrology during the past 2,500 years. The coring site is a seasonally inundated forest where water availability is directly influenced by precipitation. Diatoms, chrysophyte statospores, sponge remains and phytoliths were counted in 25 samples throughout the core. Based on the relative abundance of diatom species, the record was subdivided into four diatom assemblage zones, which mainly reflect the hydrological state of the study site. An age-depth relationship based on radiocarbon measurements of eight samples reveals a basal age of the core of approximately 2,500 cal. yrs. BP. Two significant changes of diatom assemblage composition were found that could be linked to both, natural and anthropogenic influences. At 700 cal. yrs. BP, the diatom record documents a shift from tychoplanktonicAulacoseira species to epiphytic Eunotia species, indicating a shortening of the hydroperiod, i.e. the time period during which a wetland is covered by water. This transition was interpreted as being triggered by natural climate change. In the middle of the twentieth century a second major turnover took place, at that time however, as a result of human impact on the park hydrology through the construction of dams and canals close to the study site.
Resumo:
Status and history of the Ridge-Slough Mosaic The Florida Everglades is a large subtropical wetland with diverse hydrologic, edaphic, and vegetative characteristics. Historically, a significant portion of this system was a slow moving river originating from the Kissimmee River floodplain, flowing into the vast but shallow Lake Okeechobee, and draining south-southwest over extensive peatlands into Florida Bay (McVoy 2011). Human-induced alterations to the hydrologic regime, including reduction, stabilization, and impoundment of water flow through diversion and compartmentalization of water via canals and levees have degraded pre-drainage vegetation patterns and microtopographic structure (Davis and Ogden 1994, Ogden 2005, McVoy 2011). The Everglades peatland emerged 5,000 years ago with the stabilization of sea level at approximately current elevations (Loveless 1959, Gleason and Stone 1994). This, combined with subtropical rainfalls, allowed a vast mass of water to slowly flow over a limestone bedrock platform 160 km long and 50 km wide at a near uniform descent totaling about 6 m, ultimately reaching Florida Bay (Stephens 1956, Gleason and Stone 1994, McVoy 2011). Vegetation quickly colonized the area, and peat, in the absence of adequate respiration, accumulated on the limestone bedrock to a depth of 3-3.7 m (Gleason and Stone 1994, McVoy et al. 2011). The “River of Grass” referenced by Douglas (1947) alludes to the dually intertwined processes of the historic riverine nature of the Everglades and the vast sawgrass (Cladium jamaicense) communities that have dominated the landscape for about the last 1,000 years (Bernhardt and Willard 2009).
Resumo:
Observations of snow properties, superimposed ice, and atmospheric heat fluxes have been performed on first-year and second-year sea ice in the western Weddell Sea, Antarctica. Snow in this region is particular as it does usually survive summer ablation. Measurements were performed during Ice Station Polarstern (ISPOL), a 5-week drift station of the German icebreaker RV Polarstern. Net heat flux to the snowpack was 8 W/m**2, causing only 0.1 to 0.2 m of thinning of both snow cover types, thinner first-year and thicker second-year snow. Snow thinning was dominated by compaction and evaporation, whereas melt was of minor importance and occurred only internally at or close to the surface. Characteristic differences between snow on first-year and second-year ice were found in snow thickness, temperature, and stratigraphy. Snow on second-year ice was thicker, colder, denser, and more layered than on first-year ice. Metamorphism and ablation, and thus mass balance, were similar between both regimes, because they depend more on surface heat fluxes and less on underground properties. Ice freeboard was mostly negative, but flooding occurred mainly on first-year ice. Snow and ice interface temperature did not reach the melting point during the observation period. Nevertheless, formation of discontinuous superimposed ice was observed. Color tracer experiments suggest considerable meltwater percolation within the snow, despite below-melting temperatures of lower layers. Strong meridional gradients of snow and sea-ice properties were found in this region. They suggest similar gradients in atmospheric and oceanographic conditions and implicate their importance for melt processes and the location of the summer ice edge.