906 resultados para "Cytokine like factor 1"
Resumo:
In the last years masses of ice, about 5 km long, have been protruding from the lowest part of an advancing glacier margin of the Kötlujökull in Southern Iceland. In the summer of 1983, they appeared as sediment-covered lobes, 10-60 m long, bordering the glacier rnargin like agarland. 1 to 3 push-rnoraines without ice core, rnostly sickle-shaped, occured first in the frontal parts of the lobes: behind thern came several ice-cored moraines with heights of up to several metres. The active ice in front of the precipice of the glacier is called the "glacier-foot" in this paper. The digging out of 9 lobes and the measuring of the advance of 19 lobes showed that in most cases this glacierfoot had split up at its distal end into several plate- or stem-shaped pieces of ice which were situated one upon the other, separated by moraine deposits and proceeding irregularly into the foreland at the rate of several mm/h, The sometimes different rate of advance in the same lobe and different rates of advanee in adjoining lobes (some being entirely inactive) point to a type of rnovement which is independent of the general advance of the glacier. Research in the winter of 1983/84 showed less activity in 3 examined lobes, but the activity had not ceased. The advancement of the lower parts of the glacier-foot into and across the sands of the foreland implies the following genesis of pushmoraines: Shoving off a plate of sand, folding it and pushing it over the foreland at average rates of up to 7,2 mm/h, according to the investigations in thc summer of 1983. At a certain stage of the folding process, new folds begin to develop in front of the old, and the old folds are shifted onto the backslope of thc folds in front of them until they are completely unired. In this way, "püe-moraines" arise, which become higher and higher. They include two or more folds declining towards the glacier. Systems of small moraines presumably of the same genesis occur on old moraine areas in front of the Kötlujökull. The possible cause of formation of a glacier-foot is discussed, and the moraines of the Kötlujökull are compared with certain pleistocene push-moraines.
Resumo:
Using Fos immunolabelling as a marker of neuronal activation, we investigated the role of the parabrachial nucleus in generating central neuronal responses to the systemic administration of the proinflarnmatory cytokine interleukin-1beta (1 mug/kg, i.a.). Relative to intact animals, parabrachial nucleus lesions significantly reduced the number of Fos-positive cells observed in the central amygdala (CeA), the bed nucleus of the stria terminalis (BNST), and the ventrolateral medulla (VLM) after systemic interleukin-1beta. In a subsequent experiment in which animals received parabrachial-directed deposits of a retrograde tracer, it was found that many neurons located in the nucleus tractus solitarius (NTS) and the VLM neurons were both retrogradely labelled and Fos-positive after interleukin-1beta administration. These results suggest that the parabrachial nucleus plays a critical role in interleukin-1beta-induced Fos expression in CeA, BNST and VLM neurons and that neurons of the NTS and VLM may serve to trigger or at least influence changes in parabrachial nucleus activity that follows systemic interleukin-1beta administration. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The Sp/KLF transcription factors perform a variety of biological functions, but are related in that they bind GC-box and CACCC-box sequences in DNA via a highly conserved DNA-binding domain. A database homology search, using the zinc finger DNA-binding domain characteristic of the family, has identified human KLF17 as a new family member that is most closely related to KLFs 1-8 and 12. KLF17 appears to be the human orthologue of the previously reported mouse gene, zinc finger protein 393 (Zfp393), although it has diverged significantly. The DNA-binding domain is the most conserved region, suggesting that both the murine and the human forms recognize the same binding sites in DNA and may retain similar functions. We show that human KLF17 can bind G/C-rich sites via its zinc fingers and is able to activate transcription from CACCC-box elements. This is the first report of the DNA-binding characteristics and transactivation activity of human KLF17, which, together with the homology it displays to other KLF proteins, put it in the Sp/KLF family. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
The molecular mechanisms behind the entry of the primordial follicle into the growing follicle pool remain poorly understood. To investigate this process further, a microarray-based comparison was undertaken between 2-day postpartum mouse ovaries consisting of primordial follicles/naked oocytes only and those with both primordial follicles and newly activated follicles (7-day postpartum). Gene candidates identified included the chemoattractive cytokine stromal derived factor-1 (SDF1) and its receptor CXCR4. SDF1 and CXCR4 have been implicated in a variety of physiological processes including the migration of embryonic germ cells to the gonads. SDF1-alpha expression increased with the developmental stage of the follicle. Embryonic expression was found to be dichotomous post-genii cell migration, with low expression in the female. Immunohistochemical studies nonetheless indicate that the autocrine pattern of expression ligand and receptor begins during embryonic life. Addition of recombinant SDF1-alpha to neonatal mouse ovaries in vitro resulted in significantly higher follicle densities than for control ovaries. TUNEL analysis indicated no detectable difference in populations of apoptotic cells of treated or control ovaries. Treated ovaries also contained a significantly lower percentage of activated follicles as determined by measurement of oocyte diameter and morphological analysis. Treatment of cultured ovaries with an inhibitor of SDF1-alpha, AMD3100, ablated the effect of SDF1-alpha. By retaining follicles in an unactivated state, SDF1/CXCR4 signaling may play an important role in maintaining the size and longevity of the primordial follicle pool. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Insulin-like peptide 3 (INSL3), a member of the relaxin peptide family, is produced in testicular Leydig cells and ovarian thecal cells. Gene knock-out experiments have identified a key biological role in initiating testes descent during fetal development. Additionally, INSL3 has an important function in mediating male and female germ cell function. These actions are elicited via its recently identified receptor, LGR8, a member of the leucine-rich repeat-containing G-protein- coupled receptor family. To identify the structural features that are responsible for the interaction of INSL3 with its receptor, its solution structure was determined by NMR spectroscopy together with in vitro assays of a series of B-chain alanine-substituted analogs. Synthetic human INSL3 was found to adopt a characteristic relaxin/ insulin-like fold in solution but is a highly dynamic molecule. The four termini of this two-chain peptide are disordered, and additional conformational exchange is evident in the molecular core. Alanine-substituted analogs were used to identify the key residues of INSL3 that are responsible for the interaction with the ectodomain of LGR8. These include Arg(B16) and Val(B19), with His(B12) and Arg(B20) playing a secondary role, as evident from the synergistic effect on the activity in double and triple mutants involving these residues. Together, these amino acids combine with the previously identified critical residue, Trp(B27), to form the receptor binding surface. The current results provide clear direction for the design of novel specific agonists and antagonists of this receptor.