922 resultados para visually-impaired


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal transduction in response to ligand recognition by T cell receptors regulates T cell fate within and beyond the thymus. Herein we examine the involvement of the CD4 molecule in the regulation of T helper cell survival. T helper cells that lack CD4 expression are prone to apoptosis and show diminished survival after adoptive transfer to irradiated recipients. The helper lineage in CD4−/− animals shows a higher than normal apparent rate of cell division and is also enriched for cells exhibiting a memory cell phenotype. Thus the data point to a necessary role for CD4 in the regulation of T helper cell survival and homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We model experience-dependent plasticity in the cortical representation of whiskers (the barrel cortex) in normal adult rats, and in adult rats that were prenatally exposed to alcohol. Prenatal exposure to alcohol (PAE) caused marked deficits in experience-dependent plasticity in a cortical barrel-column. Cortical plasticity was induced by trimming all whiskers on one side of the face except two. This manipulation produces high activity from the intact whiskers that contrasts with low activity from the cut whiskers while avoiding any nerve damage. By a computational model, we show that the evolution of neuronal responses in a single barrel-column after this sensory bias is consistent with the synaptic modifications that follow the rules of the Bienenstock, Cooper, and Munro (BCM) theory. The BCM theory postulates that a neuron possesses a moving synaptic modification threshold, θM, that dictates whether the neuron's activity at any given instant will lead to strengthening or weakening of its input synapses. The current value of θM changes proportionally to the square of the neuron's activity averaged over some recent past. In the model of alcohol impaired cortex, the effective θM has been set to a level unattainable by the depressed levels of cortical activity leading to “impaired” synaptic plasticity that is consistent with experimental findings. Based on experimental and computational results, we discuss how elevated θM may be related to (i) reduced levels of neurotransmitters modulating plasticity, (ii) abnormally low expression of N-methyl-d-aspartate receptors (NMDARs), and (iii) the membrane translocation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in adult rat cortex subjected to prenatal alcohol exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial orientation of vertebrates is implemented by two complementary mechanisms: allothesis, processing the information about spatial relationships between the animal and perceptible landmarks, and idiothesis, processing the substratal and inertial information produced by the animal's active or passive movement through the environment. Both systems allow the animal to compute its position with respect to perceptible landmarks and to the already traversed portion of the path. In the present study, we examined the properties of substratal idiothesis deprived of relevant exteroceptive information. Rats searching for food pellets in an arena formed by a movable inner disk and a peripheral immobile belt were trained in darkness to avoid a 60° sector; rats that entered this sector received a mild foot shock. The punished sector was defined in the substratal idiothetic frame, and the rats had to determine the location of the shock sector with the use of substratal idiothesis only, because all putative intramaze cues were made irrelevant by angular displacements of the disk relative to the belt. Striking impairment of place avoidance by this “shuffling procedure” indicates that effective substratal idiothesis must be updated by exteroceptive intramaze cues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carriers of BRCA2 germline mutations are at high risk to develop early-onset breast cancer. The underlying mechanisms of how BRCA2 inactivation predisposes to malignant transformation have not been established. Here, we provide direct functional evidence that human BRCA2 promotes homologous recombination (HR), which comprises one major pathway of DNA double-strand break repair. We found that up-regulated HR after transfection of wild-type (wt) BRCA2 into a human tumor line with mutant BRCA2 was linked to increased radioresistance. In addition, BRCA2-mediated enhancement of HR depended on the interaction with Rad51. In contrast to the tumor suppressor BRCA1, which is involved in multiple DNA repair pathways, BRCA2 status had no impact on the other principal double-strand break repair pathway, nonhomologous end joining. Thus, there exists a specific regulation of HR by BRCA2, which may function to maintain genomic integrity and suppress tumor development in proliferating cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Globin genes are subject to tissue-specific and developmental stage-specific regulation. A switch from human fetal (gamma)-to adult (beta)-globin expression occurs within erythroid precursor cells of the adult lineage. Previously we and others showed by targeted gene disruption that the zinc finger gene, erythroid Krüppel-like factor (EKLF), is required for expression of the beta-globin gene in mice, presumably through interaction with a high-affinity binding site in the proximal promoter. To examine the role of EKLF in the developmental regulation of the human gamma-globin gene we interbred EKLF heterozygotes (+/-) with mice harboring a human beta-globin yeast artificial chromosome transgene. We find that in the absence of EKLF, while human beta-globin expression is dramatically reduced, gamma-globin transcripts are elevated approximately 5-fold. Impaired silencing of gamma-globin expression identifies EKLF as the first transcription factor participating quantitatively in the gamma-globin to beta-globin switch. Our findings are compatible with a competitive model of switching in which EKLF mediates an adult stage-specific interaction between the beta-globin gene promoter and the locus control region that excludes the gamma-globin gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Brn-3 subfamily of POU domain genes are expressed in sensory neurons and in select brainstem nuclei. Earlier work has shown that targeted deletion of the Brn-3b and Brn-3c genes produce, respectively, defects in the retina and in the inner ear. We show herein that targeted deletion of the Brn-3a gene results in defective suckling and in uncoordinated limb and trunk movements, leading to early postnatal death. Brn-3a (-/-) mice show a loss of neurons in the trigeminal ganglia, the medial habenula, the red nucleus, and the caudal region of the inferior olivary nucleus but not in the retina and dorsal root ganglia. In the trigeminal and dorsal root ganglia, but not in the retina, there is a marked decrease in the frequency of neurons expressing Brn-3b and Brn-3c, suggesting that Brn-3a positively regulates Brn-3b and Brn-3c expression in somatosensory neurons. Thus, Brn-3a exerts its major developmental effects in somatosensory neurons and in brainstem nuclei involved in motor control. The pheno-types of Brn-3a, Brn-3b, and Brn-3c mutant mice indicate that individual Brn-3 genes have evolved to control development in the auditory, visual, or somatosensory systems and that despite differences between these systems in transduction mechanisms, sensory organ structures, and central information processing, there may be fundamental homologies in the genetic regulatory events that control their development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A threonine to isoleucine polymorphism at amino acid 164 in the fourth transmembrane spanning domain of the beta 2-adrenergic receptor (beta 2AR) is known to occur in the human population. The functional consequences of this polymorphism to catecholamine signaling in relevant cells or to end-organ responsiveness, however, are not known. To explore potential differences between the two receptors, site-directed mutagenesis was carried out to mimic the polymorphism. Transgenic FVB/N mice were then created overexpressing wild-type (wt) beta 2AR or the mutant Ile-164 receptor in a targeted manner in the heart using a murine alpha myosin heavy chain promoter. The functional properties of the two receptors were then assessed at the level of in vitro cardiac myocyte signaling and in vivo cardiac responses in intact animals. The expression levels of these receptors in the two lines chosen for study were approximately 1200 fmol/mg protein in cardiac membranes, which represents a approximately 45-fold increase in expression over endogenous beta AR. Myocyte membrane adenylyl cyclase activity in the basal state was significantly lower in the Ile-164 mice (19.5 +/- 2.7 pmol/min/mg) compared with wt beta 2AR mice (35.0 +/- 4.1 pmol/min/mg), as was the maximal isoproterenol-stimulated activity (49.8 +/- 7.8 versus 77.1 +/ 7.3 pmol/min/mg). In intact animals, resting heart rate (441 +/- 21 versus 534 +/- 17 bpm) and dP/dtmax (10,923 +/- 730 versus 15,308 +/- 471 mmHg/sec) were less in the Ile-164 mice as compared with wt beta 2AR mice. Similarly, the physiologic responses to infused isoproterenol were notably less in the mutant expressing mice. Indeed, these values, as well as other contractile parameters, were indistinguishable between Ile-164 mice and nontransgenic littermates. Taken together, these results demonstrate that the Ile-164 polymorphism is substantially dysfunctional in a relevant target tissue, as indicated by depressed receptor coupling to adenylyl cyclase in myocardial membranes and impaired receptor mediated cardiac function in vivo. Under normal homeostatic conditions or in circumstances where sympathetic responses are compromised due to diseased states, such as heart failure, this impairment may have important pathophysiologic consequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complement receptor 1 (CR1, CD35) and complement receptor 2 (CR2, CD21) have been implicated as regulators of B-cell activation. We explored the role of these receptors in the development of humoral immunity by generating CR1- and CR2-deficient mice using gene-targeting techniques. These mice have normal basal levels of IgM and of IgG isotypes. B- and T-cell development are overtly normal. Nevertheless, B-cell responses to low and high doses of a T-cell-dependent antigen are impaired with decreased titers of antigen-specific IgM and IgG isotypes. This defect is not complete because there is still partial activation of B lymphocytes during the primary immune response, with generation of splenic germinal centers and a detectable, although reduced, secondary antibody response. These data suggest that certain T-dependent antigens manifest an absolute dependence on complement receptors for the initiation of a normally robust immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural pathways within the hippocampus undergo use-dependent changes in synaptic efficacy, and these changes are mediated by a number of signaling mechanisms, including cAMP-dependent protein kinase (PKA). The PKA holoenzyme is composed of regulatory and catalytic (C) subunits, both of which exist as multiple isoforms. There are two C subunit genes in mice, Calpha and Cbeta, and the Cbeta gene gives rise to several splice variants that are specifically expressed in discrete regions of the brain. We have used homologous recombination in embryonic stem cells to introduce an inactivating mutation into the mouse Cbeta gene, specifically targeting the Cbeta1-subunit isoform. Homozygous mutants showed normal viability and no obvious pathological defects, despite a complete lack of Cbeta1. The mice were analyzed in electrophysiological paradigms to test the role of this isoform in long-term modulation of synaptic transmission in the Schaffer collateral-CA1 pathway of the hippocampus. A high-frequency stimulus produced potentiation in both wild-type and Cbeta1-/- mice, but the mutants were unable to maintain the potentiated response, resulting in a late phase of long-term potentiation that was only 30% of controls. Paired pulse facilitation was unaffected in the mutant mice. Low-frequency stimulation produced long-term depression and depotentiation in wild-type mice but failed to produce lasting synaptic depression in the Cbeta1 -/- mutants. These data provide direct genetic evidence that PKA, and more specifically the Cbeta1 isoform, is required for long-term depression and depotentiation, as well as the late phase of long-term potentiation in the Schaffer collateral-CA1 pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional roles of the cortical backward signal in long-term memory formation were studied in monkeys performing a visual pair-association task. Before the monkeys learned the task, the anterior commissure was transected, disconnecting the anterior temporal cortex of each hemisphere. After training with 12 pairs of pictures, single units were recorded from the inferotemporal cortex of the monkeys as the control. By injecting a grid of ibotenic acid, we unilaterally lesioned the entorhinal and perirhinal cortex, which provides massive direct and indirect backward projections ipsilaterally to the inferotemporal cortex. After the lesion, the monkeys fixated the cue stimulus normally, relearned the preoperatively learned set (set A), and learned a new set (set B) of paired associates. Then, single units were recorded from the same area as for the prelesion control. We found that (i) in spite of the lesion, the sampled neurons responded strongly and selectively to both the set A and set B patterns and (ii) the paired associates elicited significantly correlated responses in the control neurons before the lesion but not in the cells tested after the lesion, either for set A or set B stimuli. We conclude that the ability of inferotemporal neurons to represent association between picture pairs was lost after the lesion of entorhinal and perirhinal cortex, most likely through disruption of backward neural signals to the inferotemporal neurons, while the ability of the neurons to respond to a particular visual stimulus was left intact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystic fibrosis is a disease characterized by abnormalities in the epithelia of the lungs, intestine, salivary and sweat glands, liver, and reproductive systems, often as a result of inadequate hydration of their secretions. The primary defect in cystic fibrosis is the altered activity of a cAMP-activated Cl- channel, the cystic fibrosis transmembrane conductance regulator (CFTR) channel. However, it is not clear how a defect in the CFTR Cl- channel function leads to the observed pathological changes. Although much is known about the structural properties and regulation of the CFTR, little is known of its relationship to cellular functions other than the cAMP-dependent Cl- secretion. Here we report that cell volume regulation after hypotonic challenge is also defective in intestinal crypt epithelial cells isolated from CFTR -/- mutant mice. Moreover, the impairment of the regulatory volume decrease in CFTR -/- crypts appears to be related to the inability of a K+ conductance to provide a pathway for the exit of this cation during the volume adjustments. This provides evidence that the lack of CFTR protein may have additional consequences for the cellular function other than the abnormal cAMP-mediated Cl- secretion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain-derived neurotrophic factor (BDNF), a member of the nerve growth factor (NGF) gene family, has been shown to influence the survival and differentiation of specific classes of neurons in vitro and in vivo. The possibility that neurotrophins are also involved in processes of neuronal plasticity has only recently begun to receive attention. To determine whether BDNF has a function in processes such as long-term potentiation (LTP), we produced a strain of mice with a deletion in the coding sequence of the BDNF gene. We then used hippocampal slices from these mice to investigate whether LTP was affected by this mutation. Homo- and heterozygous mutant mice showed significantly reduced LTP in the CA1 region of the hippocampus. The magnitude of the potentiation, as well as the percentage of cases in which LTP could be induced successfully, was clearly affected. According to the criteria tested, important pharmacological, anatomical, and morphological parameters in the hippocampus of these animals appear to be normal. These results suggest that BDNF might have a functional role in the expression of LTP in the hippocampus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of heritable, population-wide cell damage in neoplastic development was studied in the 28 L subline of NIH 3T3 cells. These cells differ from the 17(3c) subline used previously for such studies in their lower frequency of "spontaneous" transformation at high population density and their greater capacity to produce large, dense transformed foci. Three cultures of the 28 L subline of NIH 3T3 cells were held under the constraint of confluence for 5 wk (5 wk 1 degree assay) and then assayed twice in succession (2 degrees and 3 degrees assays) for transformed foci and saturation density. After the 2 degrees assay, the cells were also passaged at low density to determine their exponential growth rates and cloned to determine the size and morphological features of the colonies. Concurrent measurements were made in each case with control cells that had been kept only in frequent low-density passages and cells that had been kept at confluence for only 2 wk (2 wk 1 degree). Two of the three cultures transferred from the 2 degrees assay of the 5 wk 1 degree cultures produced light transformed foci, and the third produced dense foci. The light focus-forming cultures grew to twice the control saturation density in their 2 degrees assay and 6-8 times the control density in the 3 degrees assay; saturation densities for the dense focus formers were about 10 times the control values in both assays. All three of the cultures transferred from the 2 degrees assay of the 5 wk 1 degree cultures multiplied at lower rates than controls at low densities, but the dense focus formers multiplied faster than the light focus formers. The reduced rates of multiplication of the light focus formers persisted for > 50 generations of exponential multiplication at low densities. Isolated colonies formed from single cells of the light focus formers were of a lower population density than controls; colonies formed by the dense focus formers were slightly denser than the controls but occupied only half the area. A much higher proportion of the colonies from the 5 wk 1 degree cultures than the controls consisted of giant cells or mixtures of giant and normal-appearing cells. The results reinforce the previous conclusion that the early increases in saturation density and light focus formation are associated with, and perhaps caused by, heritable, population-wide damage to cells that is essentially epigenetic in nature. The more advanced transformation characterized by large increases in saturation density and dense focus formation could have originated from rare genetic changes, such as chromosome rearrangements, known to occur at an elevated frequency in cells destabilized by antecedent cellular damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Substance P (SP) play a central role in nociceptive transmission and it is an agonist of the Neurokinin-1 receptor located in the lamina I of the spinal cord. SP is a major proteolytic product of the protachykinin-1 primarily synthesized in neurons. Proprotein convertases (PCs) are extensively expressed in the central nervous system (CNS) and specifically cleave at C-terminal of either a pair of basic amino acids, or a single basic residue. The proteolysis control of endogenous protachykinins has a profound impact on pain perception and the role of PCs remain unclear. The objective of this study was to decipher the role of PC1 and PC2 in the proteolysis surrogate protachykinins (i.e. Tachykinin 20-68 and Tachykinin 58-78) using cellular fractions of spinal cords from wild type (WT), PC1-/+ and PC2-/+ animals and mass spectrometry. Full-length Tachykinin 20-68 and Tachykinin 58-78 was incubated for 30 minutes in WT, PC1-/+ and PC2-/+ mouse spinal cord S9 fractions and specific C-terminal peptide fragments were identified and quantified by mass spectrometry. The results clearly demonstrate that both PC1 and PC2 mediate the formation of SP and Tachykinin 58-71, an important SP precursor, with over 50% reduction of the rate of formation in mutant PC 1 and PC2 mouse S9 spinal cord fractions. The results obtained revealed that PC1 and PC2 are involved in the C-terminal processing of protachykinin peptides and suggest a major role in the maturation of the protachykinin-1 protein.