919 resultados para tooth morphology
Resumo:
Solid-state NMR and TEM were used to quantitatively examine the evolution of clay morphology upon equibiaxial stretching of polypropylene/montmorillonite (PP-MMT) nanocomposites up to a stretch ratio (?= final length/initial length) of 3.5. 1 H spin-lattice relaxation times were measured by the saturation-recovery sequence. For the nanocomposites, initial portions of the magnetization recovery
curves (e~20 ms) were found to depend on v t, indicative of diffusion-limited relaxation and in agreement with calculations based on estimates of the spin-diffusion barrier radius surrounding the paramagnetic centers in the clay, the electron-nucleus coupling constant, and the spin-diffusion coefficient. Initial slopes of these magnetization recovery curves directly correlated with the fraction of clay/polymer interface. New clay surface was exposed as a near linear function of strain. Long-time portions of the magnetization recovery curves yielded information on the average interparticle separations, which decreased slowly before reaching a plateau at ?=~2.5 as particles aligned. TEM images supported these findings and were used to define and quantify degrees of exfoliation and homogeneity from the NMR data. Exfoliation, defined as (platelets/ stack)-1, increased from 0.38 (unstretched) to 0.80 at ? = 3.5 for PP-MMT nanocomposites stretched at
150 C and 16 s-1. A lower stretch temperature, 145 C, which is slightly below melting onset, led to an exfoliation degree of 0.87 at ?= 2.8, consistent with the ability of higher melt viscosities to allow for higher shear stress transfer. Exposure of new clay surface is attributed to aggregate breakup and orientation at low strains (? e ~2) and to platelets sliding apart at higher strains.
Resumo:
Biological activities greatly influence the formation of many soils, especially forest soils under cool humid climates. The objective of this study was to investigate the effects of vegetation and soil biota on the formation of selected soils. Field morphology, micromorphology, and carbon and organic matter analysis were determined on six Podzols (Spodosols) and two Cambisols (Inceptisols) from the eastern United States and north-east Scotland. Humification of plant material by soil fauna and fungi occurs in all organic horizons. Thick organic coatings are observed on soil peds and rock fragments from the E1 to the Bs horizon in a Haplic Podzol from Clingmans Dome Mt., TN. Thin sections reveal large accumulations of root material in different stages of decomposition in the spodic horizons of a Haplic Podzol from Whiteface Mt., NY. Organic carbon ranges from 5.4 to 8.5% in the spodic B horizons of the Whiteface Mt. Podzol. Earthworms and enchytraeids have a great effect on the structure of the surface and subsurface horizons in the Dystric Cambisols from Huntly and Clashindarroch Forests, Scotland and a Cambic Podzol from the Corrie Burn Basin, Scotland. Podzols from Speymouth Forest, Scotland (Gleyic Podzol), Cling-mans Dome Mt., and Whiteface Mt. have thick organic horizons. The Podzols from the Flatwoods in Georgia, the Pine Barrens in New Jersey, the Corrie Burn Basin, and the Cambisol from Huntly Forest have only A horizons at the surface. The Clashindarroch Forest soil has a very thin organic horizon. Warm and humid climates and sandy parent material are responsible for thick E horizons and lack of thick organic horizons in the Flatwoods (Carbic Podzol) and Pine Barrens (Ferric Podzol) soils. Earthworms and enchytraeids thrive in the Corrie Burn Basin and Huntly Forest soils due to the vegetation and the highly weathered basic parent material. The site at Clashindarroch once carried oak, and then birch forest, both of which produce a mild litter and also encourage earthworm and enchytraeids. This fauna is responsible for much mixing of the topsoil. The present conifer vegetation will eventually produce a deep litter and cause podzolization.
Resumo:
Aim: The aim of this study was to investigate the factors associated with continued significant tooth loss due to periodontal reasons during maintenance following periodontal therapy in a specialist periodontal practice in Norway.
Material and Methods: A case-control design was used. Refractory cases were patients who lost multiple teeth during a maintenance period of 13.4 (range 8-19) years following definitive periodontal treatment in a specialist practice. Controls were age- and gender-matched maintenance patients from the same practice. Characteristics and treatment outcomes were assessed, and all teeth classified as being lost due to periodontal disease during follow-up were identified. The use of implants in refractory cases and any complications relating to such a treatment were recorded.
Results: Only 27 (2.2%) patients who received periodontal treatment between 1986 and 1998 in a specialist practice met the criteria for inclusion in the refractory to treatment group. Each refractory subject lost 10.4 (range 4-16) teeth, which represented 50% of the teeth present at baseline. The rate of tooth loss in the refractory group was 0.78 teeth per year, which was 35 times greater than that in the control group. Multivariate analysis indicated that being in the refractory group was predicted by heavy smoking (p=0.026), being stressed (p=0.016) or having a family history of periodontitis (p=0.002). Implants were placed in 14 of the refractory patients and nine (64%) of these lost at least one implant. In total, 17 (25%) of the implants placed in the refractory group were lost during the study period.
Conclusions: A small number of periodontal maintenance patients are refractive to treatment and go on to experience significant tooth loss. These subjects also have a high level of implant complications and failure. Heavy smoking, stress and a family history of periodontal disease were identified as factors associated with a refractory outcome.