998 resultados para thermal clothing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dispersions of nanodiamond (average size similar to 6 nm) within dielectric insulator mineral oil are reported for their enhanced thermal conductivity properties and potential applications in thermal management. Dynamic and kinematic viscosities-very important parameters in thermal management by nanofluids-are investigated. The dependence of the dynamic viscosity is well-described by the theoretical predictions of Einstein's model. The temperature dependence of the dynamic viscosity obeys an Arrhenius-like behavior, where the activation energy and the pre-exponential factor have an exponential dependence on the filler fraction of nanodiamonds. An enhancement in thermal conductivity up to 70% is reported for nanodiamond based thermal fluids. Additional electron microscopy, Raman spectroscopy and X-ray diffraction analysis support the experimental data and their interpretation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the role of thermal conduction and magnetic fields in cores of galaxy clusters through global simulations of the intracluster medium (ICM). In particular, we study the influence of thermal conduction, both isotropic and anisotropic, on the condensation of multiphase gas in cluster cores. Previous hydrodynamic simulations have shown that cold gas condenses out of the hot ICM in thermal balance only when the ratio of the cooling time (t(cool)) and the free-fall time (t(ff)) is less than approximate to 10. Since thermal conduction is significant in the ICM and it suppresses local cooling at small scales, it is imperative to include thermal conduction in such studies. We find that anisotropic (along local magnetic field lines) thermal conduction does not influence the condensation criterion for a general magnetic geometry, even if thermal conductivity is large. However, with isotropic thermal conduction cold gas condenses only if conduction is suppressed (by a factor less than or similar to 0.3) with respect to the Spitzer value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In-Cu composite solders have been proposed as an effective thermal interface material. Here, finite element analysis and theoretical treatment of their mechanical and thermal behavior is presented. It was determined that the stresses and the strains were concentrated in the narrow and wider In channels, respectively. Furthermore, it is suggested that an In-Cu composite with disk-shaped Cu inclusions may not only further improve the thermal conductivity but may also reduce the stiffness of In-Cu composites in shear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A controlled laboratory experiment was carried out on forty Indian male college students for evaluating the effect of indoor thermal environment on occupants' response and thermal comfort. During experiment, indoor temperature varied from 21 degrees C to 33 degrees C, and the variables like relative humidity, airflow, air temperature and radiant temperature were recorded along with subject's physiological parameters (skin (T-sk) and oral temperature (T-c)) and subjective thermal sensation responses (TSV). From T-sk and T-c, body temperature (T-b) was evaluated. Subjective Thermal Sensation Vote (TSV) was recorded using ASHRAE 7-point scale. In PMV model, Fanger's T-sk equation was used to accommodate adaptive response. Step-wise regression analysis result showed T-b was better predictor of TSV than T-sk and T-c. Regional skin temperature response, suppressed sweating without dipping, lower sweating threshold temperature and higher cutaneous threshold for sweating were observed as thermal adaptive responses. These adaptive responses cannot be considered in PMV model. To incorporate subjective adaptive response, mean skin temperature (T-sk) is considered in dry heat loss calculation. Along with these, PMV-model and other two methodologies are adopted to calculate PMV values and results are compared. However, recent literature is limited to measure the sweat rate in Indians and consideration of constant Ersw in PMV model needs to be corrected. Using measured T-sk in PMV model (Method(1)), thermal comfort zone corresponding to 0.5 <= PMV <= 0.5 was evaluated as (22.46-25.41) degrees C with neutral temperature of 23.91 degrees C, similarly while using TSV response, wider comfort zone was estimated as (23.25-26.32) degrees C with neutral temperature at 24.83 degrees C, which was further increased to with TSV-PPDnew, relation. It was observed that PMV-model overestimated the actual thermal response. Interestingly, these subjects were found to be less sensitive to hot but more sensitive to cold. A new TSV-PPD relation (PPDnew) was obtained from the population distribution of TSV response with an asymmetric distribution of hot-cold thermal sensation response from Indians. The calculations of human thermal stress according to steady state energy balance models used on PMV model seem to be inadequate to evaluate human thermal sensation of Indians. Relevance to industry: The purpose of this paper is to estimate thermal comfort zone and optimum temperature for Indians. It also highlights that PMV model seems to be inadequate to evaluate subjective thermal perception in Indians. These results can be used in feedback control of HVAC systems in residential and industrial buildings. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a hybrid-polymer nanocomposite film, based on polyvinyl butyral/amino-silane functionalized nano alumina, was fabricated by melt processing. The calcium degradation measurements suggest the functionalized nanocomposite films exhibit higher resistance towards moisture penetration as compared to the neat alumina loaded films. Thermal stability, mechanical strength, and contact angle studies of the composites were also conducted to evaluate the performance of the functionalized alumina loaded films. These nanocomposite films were encapsulated over Al/P3HT/ITO Schottky structured device. The changes observed in the current density of the devices to the applied voltage before and after accelerated aging conditions are presented. The nanocomposite with functionalized alumina films exhibits 50% change in current density, which is superior to that attained with neat and non-functionalized films. POLYM. COMPOS., 35:1426-1435, 2014. (c) 2013 Society of Plastics Engineers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal decomposition of propargyl alcohol (C3H3OH), a molecule of interest in interstellar chemistry and combustion, was investigated using a single pulse shock tube in the temperature ranging from 953 to 1262 K. The products identified include acetylene, propyne, vinylacetylene, propynal, propenal, and benzene. The experimentally observed overall rate constant for thermal decomposition of propargyl alcohol was found to be k = 10((10.17 +/- 0.36)) exp(-39.70 +/- 1.83)/RT) s(-1) Ab initio theoretical calculations were carried out to understand the potential energy surfaces involved in the primary and secondary steps of propargyl alcohol thermal decomposition. Transition state theory was used to predict the rate constants, which were then used and refined in a kinetic simulation of the product profile. The first step in the decomposition is C-O bond dissociation, leading to the formation of two important radicals in combustion, OH and propargyl. This has been used to study the reverse OH propargyl radical reaction, about which there appears to be no prior work. Depending on the site of attack, this reaction leads to propargyl alcohol or propenal, one of the major products at temperatures below 1200 K. A detailed mechanism has been derived to explain all the observed products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sugganahalli, a rural vernacular community in a warm-humid region in South India, is under transition towards adopting modern construction practices. Vernacular local building elements like rubble walls and mud roofs are given way to burnt brick walls and reinforced cement concrete (RCC)/tin roofs. Over 60% of Indian population is rural, and implications of such transitions on thermal comfort and energy in buildings are crucial to understand. Vernacular architecture evolves adopting local resources in response to the local climate adopting passive solar designs. This paper investigates the effectiveness of passive solar elements on the indoor thermal comfort by adopting modern climate-responsive design strategies. Dynamic simulation models validated by measured data have also been adopted to determine the impact of the transition from vernacular to modern material-configurations. Age-old traditional design considerations were found to concur with modern understanding into bio-climatic response and climate-responsiveness. Modern transitions were found to increase the average indoor temperatures in excess of 7 degrees C. Such transformations tend to shift the indoor conditions to a psychrometric zone that is likely to require active air-conditioning. Also, the surveyed thermal sensation votes were found to lie outside the extended thermal comfort boundary for hot developing countries provided by Givoni in the bio-climatic chart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transient natural convection flow with thermal stratification in a rectangular cavity filled with fluid saturated porous medium obeying Darcy's law has been studied. Prior to the time t* = 0, the flow in the cavity is assumed to be motionless and all four walls of the cavity are at the same constant temperature. At time t* = 0, the temperatures of the vertical walls are suddenly increased which vary linearly with the distance y and at the same time on the bottom wall an isothermal heat source is placed centrally. This sudden change in the wall temperatures gives rise to unsteadiness in the problem. The horizontal temperature difference induces and sustains a buoyancy driven flow in the cavity which is then controlled by the vertical temperature difference. The partial differential equations governing the transient natural convection flow have been solved numerically. The local and average Nusselt numbers decrease rapidly in a small time interval after the start of the impulsive change in the wall temperatures and the steady state is reached quickly. The time required to reach the steady state depends on the Rayleigh number and the thermal stratification parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work reports the study of the bubble formation dynamics in the compensation chamber (CC) of the evaporator in Loop Heat Pipes. A series of experiments were conducted at different heat loads and bubbles in the CC were visualized. Bubbles diameter, frequency and velocity were measured and correlated against heat loads. Temperatures were measured at various locations and heat transfer coefficient was calculated. Performance of the LHP evaporator was evaluated at different heat loads. (C) 2013 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dual photoluminescence (PL) emission characteristics of Mn2+ doped ZnS (ZnS:Mn) quantum dots (QDs) have drawn a lot of attention recently. However, here we report the effect of thermal annealing on the PL emission characteristics of uncapped ZnS:Mn QDs of average sizes similar to 2-3 nm, synthesized by simple chemical precipitation method by using de-ionized (DI) water at room temperature. As-synthesized samples show dual PL emissions, having one UV PL band centred at similar to 400 nm and the other in the visible region similar to 610 nm. But when the samples are isochronally annealed for 2 h at 100-600 degrees C temperature range in air, similar to 90% quenching of Mn2+ related visible PL emission intensity takes place at the annealing temperature of 600 degrees C. X-ray diffraction data show that the as-synthesized cubic ZnS has been converted to wurtzite ZnO at 600 degrees C annealing temperature. The nanostructural properties of the samples are also determined by transmission electron micrograph, electron probe micro-analyser and UV-vis spectrophotometry. The photocatalytic property of the annealed ZnS:Mn sample has been demonstrated and photo-degradation efficiency of the as-synthesized and 600 degrees C annealed ZnS:Mn sample has been found out to be similar to 35% and similar to 61%, respectively, for the degradation of methylene blue dye under visible light irradiation. The synthesized QDs may find significant applications in future optoelectronic devices. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bio-nanocomposites have been developed using cross-linked chitosan and cross-linked thermoplastic starch along with acid functionalized multiwalled carbon nanotubes (f-MWCNT). The nanocomposites developed were characterized for mechanical, wear, and thermal properties. The results revealed that the nanocomposites exhibited enhanced mechanical properties. The composites containing 3% f-MWCNT showed maximum compression strength. Tribological studies revealed that, with the addition of small amount of f-MWCNTs the slide wear loss reduced up to 25%. SEM analysis of the nanocomposites showed predominantly brittle fractured surface. Thermal analysis showed that the incorporation of f-MWCNTs has improved the thermal stability for the nanocomposites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the effect of topological as well as lattice vacancy defects on the electro-thermal transport properties of the metallic zigzag graphene nano ribbons at their ballistic limit. We employ the density function theory-Non equilibrium green's function combination to calculate the transmission details. We then present an elaborated study considering the variation in the electrical current and the heat current transport with the change in temperature as well as the voltage gradient across the nano ribbons. The comparative analysis shows, that in the case of topological defects, such as the Stone-Wales defect, the electrical current transport is minimum. Besides, for the voltage gradient of 0.5 Volt and the temperature gradient of 300 K, the heat current transport reduces by similar to 62 % and similar to 50% for the cases of Stones-Wales defect and lattice vacancy defect respectively, compared to that of the perfect one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vernacular dwellings are well-suited climate-responsive designs that adopt local materials and skills to support comfortable indoor environments in response to local climatic conditions. These naturally-ventilated passive dwellings have enabled civilizations to sustain even in extreme climatic conditions. The design and physiological resilience of the inhabitants have coevolved to be attuned to local climatic and environmental conditions. Such adaptations have perplexed modern theories in human thermal-comfort that have evolved in the era of electricity and air-conditioned buildings. Vernacular local building elements like rubble walls and mud roofs are given way to burnt brick walls and reinforced cement concrete tin roofs. Over 60% of Indian population is rural, and implications of such transitions on thermal comfort and energy in buildings are crucial to understand. Types of energy use associated with a buildings life cycle include its embodied energy, operational and maintenance energy, demolition and disposal energy. Embodied Energy (EE) represents total energy consumption for construction of building, i.e., embodied energy of building materials, material transportation energy and building construction energy. Embodied energy of building materials forms major contribution to embodied energy in buildings. Operational energy (OE) in buildings mainly contributed by space conditioning and lighting requirements, depends on the climatic conditions of the region and comfort requirements of the building occupants. Less energy intensive natural materials are used for traditional buildings and the EE of traditional buildings is low. Transition in use of materials causes significant impact on embodied energy of vernacular dwellings. Use of manufactured, energy intensive materials like brick, cement, steel, glass etc. contributes to high embodied energy in these dwellings. This paper studies the increase in EE of the dwelling attributed to change in wall materials. Climatic location significantly influences operational energy in dwellings. Buildings located in regions experiencing extreme climatic conditions would require more operational energy to satisfy the heating and cooling energy demands throughout the year. Traditional buildings adopt passive techniques or non-mechanical methods for space conditioning to overcome the vagaries of extreme climatic variations and hence less operational energy. This study assesses operational energy in traditional dwelling with regard to change in wall material and climatic location. OE in the dwellings has been assessed for hot-dry, warm humid and moderate climatic zones. Choice of thermal comfort models is yet another factor which greatly influences operational energy assessment in buildings. The paper adopts two popular thermal-comfort models, viz., ASHRAE comfort standards and TSI by Sharma and Ali to investigate thermal comfort aspects and impact of these comfort models on OE assessment in traditional dwellings. A naturally ventilated vernacular dwelling in Sugganahalli, a village close to Bangalore (India), set in warm - humid climate is considered for present investigations on impact of transition in building materials, change in climatic location and choice of thermal comfort models on energy in buildings. The study includes a rigorous real time monitoring of the thermal performance of the dwelling. Dynamic simulation models validated by measured data have also been adopted to determine the impact of the transition from vernacular to modern material-configurations. Results of the study and appraisal for appropriate thermal comfort standards for computing operational energy has been presented and discussed in this paper. (c) 2014 K.I. Praseeda. Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A template-free triply interlocked Pd-6 cage (2) was synthesized by two-component self-assembly of cis-blocked 90 degrees acceptor cis-(tmen)Pd(NO3)(2) (M) and 1,3,5-tris((E)-2-(pyridin-3-yl)vinyl)benzene (L). Assembly 2 was characterized by H-1 NMR and ESI-MS, and the structure was confirmed by X-ray crystallography, which revealed a parallel conformation of the olefin double bonds belonging to the adjacent cages in the solid state at a distance of 3.656 angstrom, thereby indicating the feasibility of 2+2] photochemical reaction. Two adjacent interlocked cages were covalently married together by intermolecular 2+2] cycloaddition in a single crystal-to-single crystal fashion upon exposure to sunlight/UV irradiation. Most surprisingly, the covalently married pair was easily separated thermally in aqueous medium under mild reaction conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two hydroxycinnamic acids viz., p-coumaric, and caffeic acids have been extracted and purified from Parthenium hysterophorus, subsequently characterized by elemental analysis, FT-IR, NMR, single crystal X-ray crystallography. The optimized structures of these acids were calculated in terms of density functional theory by Gaussian 09. The validation of experimental and theoretically obtained data for structural parameters such as bond lengths and bond angles has have been carried out to analyze the statistical significance by curve fitting analysis and the values of correlation coefficient found to be 0.985, 0.992, and 0.984, 0.975 in p-coumaric, and caffeic acids, respectively. The calculated HOMO and LUMO energies show the eventual charge transfer interaction within the molecule. Thermal studies were also carried out by thermogravimetry (TG), differential thermogravimetric analysis (DTA), and derivative thermogravimetry (DTG). (C) 2014 Elsevier B.V. All rights reserved.