941 resultados para stars : magnetic fields
Resumo:
Frequency Selective Surfaces (FSS) are periodic structures in one or two dimensions that act as spatial filters, can be formed by elements of type conductors patches or apertures, functioning as filters band-stop or band-pass respectively. The interest in the study of FSS has grown through the years, because such structures meet specific requirements as low-cost, reduced dimensions and weighs, beyond the possibility to integrate with other microwave circuits. The most varied applications for such structures have been investigated, as for example, radomes, antennas systems for airplanes, electromagnetic filters for reflective antennas, absorbers structures, etc. Several methods have been used for the analysis of FSS, among them, the Wave Method (WCIP). Are various shapes of elements that can be used in FSS, as for example, fractal type, which presents a relative geometric complexity. This work has as main objective to propose a simplification geometric procedure a fractal FSS, from the analysis of influence of details (gaps) of geometry of the same in behavior of the resonance frequency. Complementarily is shown a simple method to adjust the frequency resonance through analysis of a FSS, which uses a square basic cell, in which are inserted two reentrance and dimensions these reentrance are varied, making it possible to adjust the frequency. For this, the structures are analyzed numerically, using WCIP, and later are characterized experimentally comparing the results obtained. For the two cases is evaluated, the influence of electric and magnetic fields, the latter through the electric current density vector. Is realized a bibliographic study about the theme and are presented suggestions for the continuation of this work
Resumo:
We use a finite diference eulerian numerical code, called ZEUS 3D, to do simulations involving the collision between two magnetized molecular clouds, aiming to evaluate the rate of star formation triggered by the collision and to analyse how that rate varies depending on the relative orientations between the cloud magnetic fields before the shock. The ZEUS 3D code is not an easy code to handle. We had to create two subroutines, one to study the cloud-cloud collision and the other for the data output. ZEUS is a modular code. Its hierarchical way of working is explained as well as the way our subroutines work. We adopt two sets of different initial values for density, temperature and magnetic field of the clouds and of the external medium in order to study the collision between two molecular clouds. For each set, we analyse in detail six cases with different directions and orientations of the cloud magnetic field relative to direction of motion of the clouds. The analysis of these twelve cases allowed us to conform analytical-theoretical proposals found in the literature, and to obtain several original results. Previous works indicate that, if the cloud magnetic fields before the collision are orthogonal to the direction of motion, then a strong inhibition of star formation will occur during a cloud-cloud shock, whereas if those magnetic fields are parallel to the direction of motion, star formation will be stimulated. Our treatment of the problem confirmed numerically those results, and further allowed us to quantify the relative star forming efficiencies in each case. Moreover, we propose and analyse an intermediate case where the field of one of the clouds is orthogonal to the motion and the field of the other one is parallel to the motion. We conclude that, in this case, the rate at which the star formation occurs has a value also intermediate between the two extreme cases we mentioned above. Besides that we study the case in which the fields are orthogonal to the direction of the motion but, instead of being parallel to each other, they are anti-parallel, and we obtained for this case the corresponding variation of the star formation rate due to this alteration of the field configuration. This last case has not been studied in the literature before. Our study allows us to obtain, from the simulations, the rate of star formation in each case, as well as the temporal dependence of that rate as each collision evolves, what we do in detail for one of the cases in particular. The values we obtain for the rate of star formation are in accordance with those expected from the presently existing observational data
Resumo:
Ising and m-vector spin-glass models are studied, in the limit of infinite-range in-teractions, through the replica method. First, the m-vector spin glass, in the presence of an external uniform magnetic field, as well as of uniaxial anisotropy fields, is consi-dered. The effects of the anisotropics on the phase diagrams, and in particular, on the Gabay-Toulouse line, which signals the transverse spin-glass ordering, are investigated. The changes in the Gabay-Toulouse line, due to the presence of anisotropy fields which favor spin orientations along the Cartesian axes (m = 2: planar anisotropy; m = 3: cubic anisotropy), are also studied. The antiferromagnetic Ising spin glass, in the presence of uniform and Gaussian random magnetic fields, is investigated through a two-sublattice generalization of the Sherrington-Kirpaktrick model. The effects of the magnetic-field randomness on the phase diagrams of the model are analysed. Some confrontations of the present results with experimental observations available in the literature are discussed
Resumo:
Measurements of the third harmonic of the AC-susceptibility were employed to determine the boundaries of the linear regime of the magnetic response of Nb powder. Non-linear contributions to the magnetic response reveal the occurrence of a structured phase, disappearing as the vortex lattice melts to the liquid state. A systematic study of the third harmonic was conducted to determine how its onset temperature depends on experimental parameters, such as the frequency and amplitude of the excitation field. The melting line (ML) has been extracted from the onset temperature measured at low-frequencies and low-excitation fields in the presence of DC magnetic fields. The study indicates that the ML can be described by a 3D vortex-glass model, except at lower fields, where the system experiences a depinning crossover, and the best description of the experimental data is provided by a 3D Bose-glass model. (c) 2008 Elsevier B. V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Different compositions of Ni0,5-xCuxZn0,5Fe2O4 and Ni0,5-xCoxZn0,5Fe2O4 0 ≤ x ≤ 0.3 were synthesized ferrite y the citrate precursor method. The stoichiometric compositions were calcined in air at 350°C and then pressed into pellets and toroids. The pressed samples were sintered at temperatures of 1000, 1050 and 1100°C/3h in air control at the speed of heating and cooling. The calcined powders were characterized by XRD, TGA / DTG, FTIR, SEM and vibrating sample magnetometry (VSM) and the sintered samples by XRD, SEM, MAV, density and measurements of permeability and magnetic losses. There was pure phase formation ferrimagnetism applied at all temperatures except for A-I composition at all sintering temperatures and A-II only at a temperature of 1100°C. Crystallite sizes were obtained by Rietveld analysis, nanometer size from 11 to 20 nm for the calcined powders. For SEM, the sintered samples showed grain size between 1 and 10 micrometers. Bulk density (ρ) of sintered material presented to the Families almost linear behavior with increasing temperature and a tendency to decrease with increasing concentration of copper, different behavior of the B Family, where the increase in temperature decreased the density. The magnetic measurements revealed the powder characteristics of a soft ferrimagnetic material. Two processes of magnetization were considered, the superparamagnetism at low temperatures (350°C) and the formation of magnetic domains at higher temperatures. Obtaining the best parameters for P and B-II magnetic ferrites at high temperatures. The sintered material at 1000°C showed a relative permeability (μ) from 50 to 800 for the A Family and from 10 to 600 for the B Family. The samples sintered at 1100°C, B Family showed a variation from 10 to 1000 and the magnetic loss (tan δ) of A and B Families, around of 1. The frequency response of the toroidal core is in the range of 0.3 kHz. Several factors contribute to the behavior of microstructure considering the quantities μ and tan δ, such as the grain size, inter-and intragranular porosity, amount of grain boundary and the aspects of the dynamics of domain walls at high frequencies.
Resumo:
In this work we study, for two different growth directions, multilayers of nanometric magnetic metallic lms grown, using Fibonacci sequences, in such a way that the thickness of the non-magnetic spacer may vary from a pair of lms to another. We applied a phenomenological theory that uses the magnetic energy to describe the behavior of the system. After we found numerically the global minimum of the total energy, we used the equilibrium angles to obtain magnetization and magnetoresistance curves. Next, we solved the equation of motion of the multilayers to nd the dispersion relation for the system. The results show that, when spacers are used with thickness so that the biquadratic coupling is strong in comparison to the bilinear one, non usual behaviors for both magnetization and magnetoresistance are observed. For example, a dependence on the parity of the Fibonacci generation utilized for constructing the system, a low magnetoresistance step in low external magnetic fields and regions that show high sensibility to small variations of the applied field. Those behaviors are not present in quasiperiodic magnetic multilayers with constant spacer thickness
Resumo:
Anisotropic Magnetoresistive (AMR) sensors shows a new possibility to detect magnetic fields produced by magnetic particles present in the gastrointestinal (GI) tract. A system that uses excitation and detection of magnetic field was developed using AMR sensor. A magnetic flux concentrator was also studied to increase the sensitivity of AMR in this work.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents two methods to measure magnetic losses in an iron core for didactic applications for undergraduate students. It is based on indirect measurements of magnetic field and induced flux, simplifying the required instrumentation, and thus, making its implementation possible for lab sessions. Moreover, a comparison between two methods is proposed, allowing the students reaching a deeper understanding of the hysteresis phenomena.
Resumo:
We report the exact fundamental solution for Kramers equation associated to a Brownian gas of charged particles, under the influence of homogeneous (spatially uniform) otherwise arbitrary, external mechanical, electrical and magnetic fields. Some applications are presented, namely the hydrothermodynamical picture for Brownian motion in the long-time regime. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The variation of the elongation of axisymmetric plasma columns in vertical equilibrium magnetic fields is investigated as a function of the aspect ratio using the Solov'ev equilibrium model and the principle of virtual casing.
Resumo:
We will present measurements and calculations related to the antisymmetric perturbations, and comparisons with the symmetric ones, of the IFUSP race-track microtron booster accelerator end magnets. These perturbations were measured in planes situated at +/-12 mm of the middle plane, in a gap height of 4 cm, for a field distribution of about 0.1 T. The measurements were done in 1170 points, separated by a distance of 8 mm, using an automated system with a +/-1.5 mu T differential Hall probe. The race-track microtron booster is the second stage of the 30.0 MeV electron accelerator under construction at the Linear Accelerator Laboratory in which the required uniformity for the magnetic field is of about 10(-3). The method of correction employed to homogenize the IFUSP race-track microtron booster accelerator magnets assures uniformity of 10(-5) in an average field of 0.1 T, over an area of 700 cm(2). This method uses the principle of attaching to the pole pieces correction coils produced by etching techniques, with copper leads shaped like the isofield lines of the normal component of the magnetic field measured. The ideal planes, in which these measurements are done, are calculated and depend on the behavior of the magnetic field perturbations: symmetric or antisymmetric with reference to the middle plane of the magnet gap. These calculations are presented in this work and show that for antisymmetric perturbations there is no ideal plane for the correction of the magnetic field; for the symmetric one, these planes are at +/-60% of the half gap height, from the middle plane. So this method of correction is not feasible for antisymmetric perturbations, as will be shown. Besides, the correction of the symmetric portion of the field distribution does not influence the antisymmetric one, which almost does not change, and corroborates the theoretical predictions. We found antisymmetric perturbations of small intensity only in one of the two end magnets. However, they are not detected at +/- 1 mm of the middle plane and will not damage the electron beam.
Resumo:
Far-infrared transitions in polar semiconductors are known to be affected by the presence of shallow donor impurities, external magnetic fields and the electron-LO-phonon interaction. We calculate the magnetodonor states in indium phosphide by a diagonalization procedure, and introduce the electron-phonon interaction by the Frohlich term. The main effects of this perturbation are calculated by a multi-level version of the Wigner-Brillouin theory. We determine the transition energies, from the ground state to excited states, and find good qualitative agreement with recently reported absorption-spectroscopy measurements in the 100-800 cm(-1) range, with applied magnetic fields up to 30 T. Our calculations suggest that experimental peak splittings in the 400-450 cm(-1) range are due to the electron-phonon interaction.