965 resultados para spotsize converter
Resumo:
This paper presents holistic design of a novel four-way differential power-combining transformer for use in millimeter-wave power-amplifier (PA). The combiner with an inner radius of 25 µm exhibits a record low insertion loss of 1.25 dB at 83.5 GHz. It is designed to simultaneously act as a balanced-to-unbalanced converter, removing the need for additional BALUNs typically required in differential circuits. A complete circuit comprised of a power splitter, two-stage differential cascode PA array, a power combiner as well as input and output matching elements was designed and realized in SiGe technology with f/f 170/250 GHz. Measured small-signal gain of at least 16.8 dB was obtained from 76.4 to 85.3 GHz with a peak 19.5 dB at 83 GHz. The prototype delivered 12.5 dBm output referred 1 dB compression point and 14 dBm saturated output power when operated from a 3.2 V dc supply voltage at 78 GHz.
Resumo:
Neutrons are unique particles to probe samples in many ?elds of research ranging from biology to material sciences to engineering and security applications. Access to bright, pulsed sources is currently
limited to large accelerator facilities and there has been a growing need for compact sources over the recent years. Short pulse laser driven neutron sources could be a compact and relatively cheap way to
produce neutrons with energies in excess of 10 MeV. For more than a decade experiments have tried to obtain neutron numbers suf?cient for applications. Our recent experiments demonstrated an ion acceleration mechanism based on the concept of relativistic transparency. Using this new mechanism, we produced an intense beam of high energy (up to 170 MeV) deuterons directed into a Be converter to
produce a forward peaked neutron ?ux with a record yield, on the order of 1010 n=sr. We present results comparing the two acceleration mechanisms and the ?rst short pulse laser generated neutron radiograph.
Resumo:
Oscillating wave surge converters (OWSCs) are a class of wave power technology that exploits the enhanced horizontal fluid particle movement of waves in the nearshore coastal zone with water depths of 10–20 m. OWSCs predominantly oscillate horizontally in surge as opposed to the majority of wave devices, which oscillate vertically in heave and usually are deployed in deeper water. The characteristics of the nearshore wave resource are described along with the hydrodynamics of OWSCs. The variables in the OWSC design space are discussed together with a presentation of some of their effects on capture width, frequency bandwidth response and power take-off characteristics. There are notable differences between the different OWSCs under development worldwide, and these are highlighted. The final section of the paper describes Aquamarine Power’s 315kW Oyster 1 prototype, which was deployed at the European Marine Energy Centre in August 2009. Its place in the OWSC design space is described along with the practical experience gained. This has led to the design of Oyster 2, which was deployed in August 2011. It is concluded that nearshore OWSCs are serious contenders in the mix of wave power technologies. The nearshore wave climate has a narrower directional spread than the offshore, the largest waves are filtered out and the exploitable resource is typically only 10–20% less in 10m depth compared with 50m depth. Regarding the devices, a key conclusion is that OWSCs such as Oyster primarily respond in the working frequency range to the horizontal fluid acceleration; Oyster is not a drag device responding to horizontal fluid velocity. The hydrodynamics of Oyster is dominated by inertia with added inertia being a very significant contributor. It is unlikely that individual flap modules will exceed 1MW in installed capacity owing to wave resource, hydrodynamic and economic constraints. Generating stations will be made up of line arrays of flaps with communal secondary power conversion every 5–10 units.
Resumo:
The general properties of a frequency selective surface loaded with negative impedance converter (NIC)-based active loads are discussed from a theoretical perspective.The stability problem associated with NIC circuits embedded in artificial magnetic conductor (AMC) and AMC absorber applications is studied using pole-zero analysis. The requirements and constraints for achieving stable operation with enhanced bandwidth using negative capacitance as realized by a floating NIC network are derived. Furthermore, it is shown that it is nearly impossible to simultaneously implement a negative capacitor and a negative inductor to such structures. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 54:2111–2114, 2012; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27019
Resumo:
This paper examines the ability of the doubly fed induction generator (DFIG) to deliver multiple reactive power objectives during variable wind conditions. The reactive power requirement is decomposed based on various control objectives (e.g. power factor control, voltage control, loss minimisation, and flicker mitigation) defined around different time frames (i.e. seconds, minutes, and hourly), and the control reference is generated by aggregating the individual reactive power requirement for each control strategy. A novel coordinated controller is implemented for the rotor-side converter and the grid-side converter considering their capability curves and illustrating that it can effectively utilise the aggregated DFIG reactive power capability for system performance enhancement. The performance of the multi-objective strategy is examined for a range of wind and network conditions, and it is shown that for the majority of the scenarios, more than 92% of the main control objective can be achieved while introducing the integrated flicker control scheme with the main reactive power control scheme. Therefore, optimal control coordination across the different control strategies can maximise the availability of ancillary services from DFIG-based wind farms without additional dynamic reactive power devices being installed in power networks.
Resumo:
Reactive power has become a vital resource in modern electricity networks due to increased penetration of distributed generation. This paper examines the extended reactive power capability of DFIGs to improve network stability and capability to manage network voltage profile during transient faults and dynamic operating conditions. A coordinated reactive power controller is designed by considering the reactive power capabilities of the rotor-side converter (RSC) and the grid-side converter (GSC) of the DFIG in order to maximise the reactive power support from DFIGs. The study has illustrated that, a significant reactive power contribution can be obtained from partially loaded DFIG wind farms for stability enhancement by using the proposed capability curve based reactive power controller; hence DFIG wind farms can function as vital dynamic reactive power resources for power utilities without commissioning additional dynamic reactive power devices. Several network adaptive droop control schemes are also proposed for network voltage management and their performance has been investigated during variable wind conditions. Furthermore, the influence of reactive power capability on network adaptive droop control strategies has been investigated and it has also been shown that enhanced reactive power capability of DFIGs can substantially improve the voltage control performance.
Resumo:
Optimal fault ride-through (FRT) conditions for a doubly-fed induction generator (DFIG) during a transient grid fault are analyzed with special emphasis on improving the active power generation profile. The transition states due to crowbar activation during transient faults are investigated to exploit the maximum power during the fault and post-fault period. It has been identified that operating slip, severity of fault and crowbar resistance have a direct impact on the power capability of a DFIG, and crowbar resistance can be chosen to optimize the power capability. It has been further shown that an extended crowbar period can deliver enhanced inertial response following the transient fault. The converter protection and drive train dynamics have also been analyzed while choosing the optimum crowbar resistance and delivering enhanced inertial support for an extended crowbar period.
Resumo:
The doubly-fed induction generator (DFIG) now represents the dominant technology in wind turbine design. One consequence of this is limited damping and inertial response during transient grid disturbances. A dasiadecoupledpsila strategy is therefore proposed to operate the DFIG grid-side converter (GSC) as a static synchronous compensator (STATCOM) during a fault, supporting the local voltage, while the DFIG operates as a fixed-speed induction generator (FSIG) providing an inertial response. The modeling aspects of the decoupled control strategy, the selection of protection control settings, the significance of the fault location and operation at sub- and super-synchronous speeds are analyzed in detail. In addition, a case study is developed to validate the proposed strategy under different wind penetrations levels. The simulations show that suitable configuration of the decoupled strategy can be deployed to improve system voltage stability and inertial response for a range of scenarios, especially at high wind penetration. The conclusions are placed in context of the practical limitations of the technology employed and the system conditions.
Resumo:
Most Wave Energy Converters (WECs) being developed are fundamentally different from known marine structures. Limited experience is a fundamental challenge for the design, especially issues concerning load assumptions and power estimates. Reynolds-Averaged Navier-Stokes (RANS) CFD methods are being used successfully in many areas of marine engineering. They have been shown to accurately simulate many hydrodynamic effects and are a helpful tool for investigating complex flows. The major drawback is the significant computational power required and the associated overhead with pre and post-processing. This paper presents the challenges and advantages in the application of RANS CFD methods in the design process of a wave energy converter and compares the time, labour and ultimately financial requirements for obtaining practical results.
Resumo:
This thesis investigates the hydrodynamics of a small, seabed mounted, bottom hinged, wave energy converter in shallow water. The Oscillating Wave Surge Converter is a pitching flap-type device which is located in 10-15m of water to take advantage of the amplification of horizontal water particle motion in shallow water. A conceptual model of the hydrodynamics of the device has been formulated and shows that, as the motion of the flap is highly constrained, the magnitude of the force applied to the flap by the wave is strongly linked to the power absorption.
An extensive set of experiments has been carried out in the wave tank at Queen’s University at both 40th and 20th scales. The experiments have included testing in realistic sea states to estimate device performance as well as fundamental tests using small amplitude monochromatic waves to determine the force applied to the flap by the waves. The results from the physical modelling programme have been used in conjunction with numerical data from WAMIT to validate the conceptual model.
The work finds that tuning the OWSC to the incident wave periods is problematic and only results in a marginal increase in power capture. It is also found that the addition of larger diameter rounds to the edges of the flap reduces viscous losses and has a greater effect on the performance of the device than tuning. As wave force is the primary driver of device performance it is shown that the flap should fill the water column and should pierce the water surface to reduce losses due to wave overtopping.
With the water depth fixed at approximately 10m it is shown that the width of the flap has the greatest impact on the magnitude of wave force, and thus device performance. An 18m wide flap is shown to have twice the absorption efficiency of a 6m wide flap and captures 6 times the power. However, the increase in power capture with device width is not limitless and a 24m wide flap is found to be affected by two-dimensional hydrodynamics which reduces its performance per unit width, especially in sea states with short periods. It is also shown that as the width increases the performance gains associated with the addition of the end effectors reduces. Furthermore, it is shown that as the flap width increases the natural pitching period of the flap increases, thus detuning the flap further from the wave periods of interest for wave energy conversion.
The effect of waves approaching the flap from an oblique angle is also investigated and the power capture is found to decrease with the cosine squared of the encounter angle. The characteristic of the damping applied by the power take off system is found to have a significant effect on the power capture of the device, with constant damping producing between 20% and 30% less power than quadratic damping. Furthermore, it is found that applying a higher level of damping, or a damping bias, to the flap as it pitches towards the beach increases the power capture by 10%.
A further set of experiments has been undertaken in a case study used to predict the power capture of a prototype of the OWSC concept. The device, called the Oyster Demonstrator, has been developed by Aquamarine Power Ltd. and is to be installed at the European Marine Energy Centre, Scotland, in 2009.
The work concludes that OWSC is a viable wave energy converter and absorption efficiencies of up 75% have been measured. It is found that to maximise power absorption the flap should be approximately 20m wide with large diameter rounded edges, having its pivot close to the seabed and its top edge piercing the water surface.
Resumo:
Bottom hinged Oscillating Wave Surge Converters (OWSCs) are efficient devices for extracting power from ocean waves. There is limited knowledge about wave slamming on such devices. This paper deals with numerical studies of wave slamming on an oscillating flap to investigate the mechanism of slamming events. In our model, the Navier–Stokes equations are discretized using the Finite Volume method with the Volume of Fluid (VOF) approach for interface capturing. Waves are generated by a flaptype wave maker in the numerical wave tank, and the dynamic mesh method is applied to model the motion of the oscillating flap. Basic mesh and time step refinement studies are performed. The flow characteristics in a slamming event are analysed based on numerical results. Various simulations with different flap densities, water depths and wave amplitudes are performed for a better understanding of the slamming.
Resumo:
This paper analyzes the behavior of a Voltage Source Converter Based HVDC system under DC cable fault conditions. The behavior of the HVDC system during a permanent line-to-earth fault is analyzed, outlining the systems configuration and behavior at each stage of the fault timeline. Operation of the proposed system under a single earthing configurations i.e. Converter (solid) earthed/AC transformer unearthed, was analyzed and simulated, with particular attention paid to the converters operation. It was observed that the development of potential earth loops within the system as a result of DC line- toearth faults leads to substantial overcurrent and results in system configuration oscillation.
Resumo:
The majority of the kinetic models employed in catalytic after-treatment of exhaust emissions use a global kinetic approach owing to the simplicity because one expression can account for all the steps in a reaction. The major drawback of this approach is the limited predictive capabilities of the models. The intrinsic kinetic approach offers much more information about the processes occurring within the catalytic converter; however, it is significantly more complex and time consuming to develop. In the present work, a methodology which allows accessing a model that combines the simplicity of the global kinetic approach and the accuracy of the intrinsic kinetic approach is reported. To assess the performance of this new approach, the oxidation of carbon monoxide in the presence of nitric oxide as well as a driving cycle was investigated. The modelling of carbon monoxide oxidation with oxygen which utilised the intrinsic kinetic approach with the global kinetic approach was used for the carbon monoxide + nitric oxide reaction (and all remaining reactions for the driving cycle). The comparison of the model results for the dual intrinsic + global kinetic approach with the experimental data obtained for both the reactor and the driving cycle indicate that the dual approach is promising with results significantly better than those obtained with only the global kinetics approach.
Resumo:
Mathematical modelling has become an essential tool in the design of modern catalytic systems. Emissions legislation is becoming increasingly stringent, and so mathematical models of aftertreatment systems must become more accurate in order to provide confidence that a catalyst will convert pollutants over the required range of conditions.
Automotive catalytic converter models contain several sub-models that represent processes such as mass and heat transfer, and the rates at which the reactions proceed on the surface of the precious metal. Of these sub-models, the prediction of the surface reaction rates is by far the most challenging due to the complexity of the reaction system and the large number of gas species involved. The reaction rate sub-model uses global reaction kinetics to describe the surface reaction rate of the gas species and is based on the Langmuir Hinshelwood equation further developed by Voltz et al. [1] The reactions can be modelled using the pre-exponential and activation energies of the Arrhenius equations and the inhibition terms.
The reaction kinetic parameters of aftertreatment models are found from experimental data, where a measured light-off curve is compared against a predicted curve produced by a mathematical model. The kinetic parameters are usually manually tuned to minimize the error between the measured and predicted data. This process is most commonly long, laborious and prone to misinterpretation due to the large number of parameters and the risk of multiple sets of parameters giving acceptable fits. Moreover, the number of coefficients increases greatly with the number of reactions. Therefore, with the growing number of reactions, the task of manually tuning the coefficients is becoming increasingly challenging.
In the presented work, the authors have developed and implemented a multi-objective genetic algorithm to automatically optimize reaction parameters in AxiSuite®, [2] a commercial aftertreatment model. The genetic algorithm was developed and expanded from the code presented by Michalewicz et al. [3] and was linked to AxiSuite using the Simulink add-on for Matlab.
The default kinetic values stored within the AxiSuite model were used to generate a series of light-off curves under rich conditions for a number of gas species, including CO, NO, C3H8 and C3H6. These light-off curves were used to generate an objective function.
This objective function was used to generate a measure of fit for the kinetic parameters. The multi-objective genetic algorithm was subsequently used to search between specified limits to attempt to match the objective function. In total the pre-exponential factors and activation energies of ten reactions were simultaneously optimized.
The results reported here demonstrate that, given accurate experimental data, the optimization algorithm is successful and robust in defining the correct kinetic parameters of a global kinetic model describing aftertreatment processes.