951 resultados para principal component analysis (PCA)
Integrated cytokine and metabolic analysis of pathological responses to parasite exposure in rodents
Resumo:
Parasitic infections cause a myriad of responses in their mammalian hosts, on immune as well as on metabolic level. A multiplex panel of cytokines and metabolites derived from four parasite-rodent models, namely, Plasmodium berghei-mouse, Trypanosoma brucei brucei-mouse, Schistosoma mansoni-mouse, and Fasciola hepatica-rat were statistically coanalyzed. 1H NMR spectroscopy and multivariate statistical analysis were used to characterize the urine and plasma metabolite profiles in infected and noninfected animals. Each parasite generated a unique metabolic signature in the host. Plasma cytokine concentrations were obtained using the ‘Meso Scale Discovery’ multi cytokine assay platform. Multivariate data integration methods were subsequently used to elucidate the component of the metabolic signature which is associated with inflammation and to determine specific metabolic correlates with parasite-induced changes in plasma cytokine levels. For example, the relative levels of acetyl glycoproteins extracted from the plasma metabolite profile in the P. berghei-infected mice were statistically correlated with IFN-γ, whereas the same cytokine was anticorrelated with glucose levels. Both the metabolic and the cytokine data showed a similar spatial distribution in principal component analysis scores plots constructed for the combined murine data, with samples from all infected animals clustering according to the parasite species and whereby the protozoan infections (P. berghei and T. b. brucei) grouped separately from the helminth infection (S. mansoni). For S. mansoni, the main infection-responsive cytokines were IL-4 and IL-5, which covaried with lactate, choline, and D-3-hydroxybutyrate. This study demonstrates that the inherently differential immune response to single and multicellular parasites not only manifests in the cytokine expression, but also consequently imprints on the metabolic signature, and calls for in-depth analysis to further explore direct links between immune features and biochemical pathways.
Resumo:
Abstract: During the transition from endo-dormancy to eco-dormancy and subsequent growth, the onion bulb undergoes the transition from sink organ to source, to sustain cell division in the meristematic tissue. The mechanisms controlling these processes are not fully understood. Here, a detailed analysis of whole onion bulb physiological, biochemical and transcriptional changes in response to sprouting is reported, enabling a better knowledge of the mechanisms regulating post-harvest onion sprout development. Biochemical and physiological analyses were conducted on different cultivars ('Wellington', 'Sherpa' and 'Red Baron') grown at different sites over 3 years, cured at different temperatures (20, 24 and 28 degrees C) and stored under different regimes (1, 3, 6 and 6 1 degrees C). In addition, the first onion oligonucleotide microarray was developed to determine differential gene expression in onion during curing and storage, so that transcriptional changes could support biochemical and physiological analyses. There were greater transcriptional differences between samples at harvest and before sprouting than between the samples taken before and after sprouting, with some significant changes occurring during the relatively short curing period. These changes are likely to represent the transition from endo-dormancy to sprout suppression, and suggest that endo-dormancy is a relatively short period ending just after curing. Principal component analysis of biochemical and physiological data identified the ratio of monosaccharides (fructose and glucose) to disaccharide (sucrose), along with the concentration of zeatin riboside, as important factors in discriminating between sprouting and pre-sprouting bulbs. These detailed analyses provide novel insights into key regulatory triggers for sprout dormancy release in onion bulbs and provide the potential for the development of biochemical or transcriptional markers for sprout initiation. Evidence presented herein also suggests there is no detrimental effect on bulb storage life and quality caused by curing at 20 degrees C, producing a considerable saving in energy and costs.
Resumo:
Cognitive experiments involving motor execution (ME) and motor imagery (MI) have been intensively studied using functional magnetic resonance imaging (fMRI). However, the functional networks of a multitask paradigm which include ME and MI were not widely explored. In this article, we aimed to investigate the functional networks involved in MI and ME using a method combining the hierarchical clustering analysis (HCA) and the independent component analysis (ICA). Ten right-handed subjects were recruited to participate a multitask experiment with conditions such as visual cue, MI, ME and rest. The results showed that four activation clusters were found including parts of the visual network, ME network, the MI network and parts of the resting state network. Furthermore, the integration among these functional networks was also revealed. The findings further demonstrated that the combined HCA with ICA approach was an effective method to analyze the fMRI data of multitasks.
Resumo:
A new sparse kernel density estimator is introduced based on the minimum integrated square error criterion combining local component analysis for the finite mixture model. We start with a Parzen window estimator which has the Gaussian kernels with a common covariance matrix, the local component analysis is initially applied to find the covariance matrix using expectation maximization algorithm. Since the constraint on the mixing coefficients of a finite mixture model is on the multinomial manifold, we then use the well-known Riemannian trust-region algorithm to find the set of sparse mixing coefficients. The first and second order Riemannian geometry of the multinomial manifold are utilized in the Riemannian trust-region algorithm. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with competitive accuracy to existing kernel density estimators.
Resumo:
P>The use of seven domains for the Oral Health Impact Profile (OHIP)-EDENT was not supported for its Brazilian version, making data interpretation in clinical settings difficult. Thus, the aim of this study was to assess patients` responses for the translated OHIP-EDENT in a group of edentulous subjects and to develop factor scales for application in future studies. Data from 103 conventional and implant-retained complete denture wearers (36 men, mean age of 69 center dot 1 +/- 10 center dot 3 years) were assessed using the Brazilian version of the OHIP-EDENT. Oral health-related quality of life domains were identified by factor analysis using principal component analysis as the extraction method, followed by varimax rotation. Factor analysis identified four factors that accounted for 63% of the 19 items total variance, named masticatory discomfort and disability (four items), psychological discomfort and disability (five items), social disability (five items) and oral pain and discomfort (five items). Four factors/domains of the Brazilian OHIP-EDENT version represent patient-important aspects of oral health-related quality of life.
Resumo:
The impact of human activity on the sediments of Todos os Santos Bay in Brazil was evaluated by elemental analysis and (13)C Nuclear Magnetic Resonance ((13)C NMR). This article reports a study of six sediment cores collected at different depths and regions of Todos os Santos Bay. The elemental profiles of cores collected on the eastern side of Frades Island suggest an abrupt change in the sedimentation regime. Auto-regressive Integrated Moving Average (ARIMA) analysis corroborates this result. The range of depths of the cores corresponds to about 50 years ago, coinciding with the implantation of major onshore industrial projects in the region. Principal Component Analysis of the (13)C NMR spectra clearly differentiates sediment samples closer to the Subae estuary, which have high contents of terrestrial organic matter, from those closer to a local oil refinery. The results presented in this article illustrate several important aspects of environmental impact of human activity on this bay. (C) 2011 Elsevier Ltd. All rights reserved.
Structural requirement for PPAR gamma binding revealed by a meta analysis of holo-crystal structures
Resumo:
PPAR gamma is a ligand regulated transcriptional factor that modulates the transcription of several genes involved in fat and sugar metabolism. Due to its easy bacterial expression and crystallization, several crystal structures of holo-PPAR gamma have been reported and deposited in the Protein Data Bank. Here, we investigated the three-dimensional electrostatic properties of 55 PPAR gamma ligands and used this information for clustering them through principal component analysis. We found out that, according to their electrostatic potential, these ligands can be separated in three groups, with different binding features. We also observed that non-selective and selective ligands show different 3D electrostatic properties and are separated in different clusters. The relevance of this analysis for the development of new binders is discussed. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
In this paper, we present a 3D face photography system based on a facial expression training dataset, composed of both facial range images (3D geometry) and facial texture (2D photography). The proposed system allows one to obtain a 3D geometry representation of a given face provided as a 2D photography, which undergoes a series of transformations through the texture and geometry spaces estimated. In the training phase of the system, the facial landmarks are obtained by an active shape model (ASM) extracted from the 2D gray-level photography. Principal components analysis (PCA) is then used to represent the face dataset, thus defining an orthonormal basis of texture and another of geometry. In the reconstruction phase, an input is given by a face image to which the ASM is matched. The extracted facial landmarks and the face image are fed to the PCA basis transform, and a 3D version of the 2D input image is built. Experimental tests using a new dataset of 70 facial expressions belonging to ten subjects as training set show rapid reconstructed 3D faces which maintain spatial coherence similar to the human perception, thus corroborating the efficiency and the applicability of the proposed system.
Resumo:
Selective Estrogen Receptor Modulators ( SERMs) have been developed, but the selectivity towards the subtypes ( ER or ER is not well understood. Based on three-dimensional structural properties of ligand binding domains, a model that takes into account this aspect was developed via molecular interaction fields and consensus principal component analysis (GRID/CPCA).
Resumo:
Chemometric methods can contribute to soil research by permitting the extraction of more information from the data. The aim of this work was to use Principal Component Analysis to evaluate data obtained through chemical and spectroscopic methods on the changes in the humification process of soil organic matter from two tropical soils after sewage sludge application. In this case, humic acids extracted from Typic Eutrorthox and Typic Haplorthox soils with and without sewage sludge application for 7 consecutive years were studied. The results obtained for all of the samples and methods showed two clusters: samples extracted from the two soil types. These expected results indicated the textural difference between the two soils was more significant than the differences between treatments (control and sewage sludge application) or between depths. In this case, an individual chemometric treatment was made for each type of soil. It was noted that the characterization of the humic acids extracted from soils with and without sewage sludge application after 7 consecutive years using several methods supplies important results about changes in the humification degree of soil organic matter, These important result obtained by Principal Component Analysis justify further research using these methods to characterize the changes in the humic acids extracted from sewage sludge-amended soils. (C) 2009 Elsevier B.V. All rights reserved.