959 resultados para predictive habitat mapping
Resumo:
MR structural T1-weighted imaging using high field systems (>3T) is severely hampered by the existing large transmit field inhomogeneities. New sequences have been developed to better cope with such nuisances. In this work we show the potential of a recently proposed sequence, the MP2RAGE, to obtain improved grey white matter contrast with respect to conventional T1-w protocols, allowing for a better visualization of thalamic nuclei and different white matter bundles in the brain stem. Furthermore, the possibility to obtain high spatial resolution (0.65 mm isotropic) R1 maps fully independent of the transmit field inhomogeneities in clinical acceptable time is demonstrated. In this high resolution R1 maps it was possible to clearly observe varying properties of cortical grey matter throughout the cortex and observe different hippocampus fields with variations of intensity that correlate with known myelin concentration variations.
Resumo:
Debris flows and related landslide processes occur in many regions all over Norway and pose a significant hazard to inhabited areas. Within the framework of the development of a national debris flows susceptibility map, we are working on a modeling approach suitable for Norway with a nationwide coverage. The discrimination of source areas is based on an index approach, which includes topographic parameters and hydrological settings. For the runout modeling, we use the Flow-R model (IGAR, University of Lausanne), which is based on combined probabilistic and energetic algorithms for the assessment of the spreading of the flow and maximum runout distances. First results for different test areas have shown that runout distances can be modeled reliably. For the selection of source areas, however, additional factors have to be considered, such as the lithological and quaternary geological setting, in order to accommodate the strong variation in debris flow activity in the different geological, geomorphological and climate regions of Norway.
Resumo:
PURPOSE: At 7 Tesla (T), conventional static field (B0 ) projection mapping techniques, e.g., FASTMAP, FASTESTMAP, lead to elevated specific absorption rates (SAR), requiring longer total acquisition times (TA). In this work, the series of adiabatic pulses needed for slab selection in FASTMAP is replaced by a single two-dimensional radiofrequency (2D-RF) pulse to minimize TA while ensuring equal shimming performance. METHODS: Spiral gradients and 2D-RF pulses were designed to excite thin slabs in the small tip angle regime. The corresponding selection profile was characterized in phantoms and in vivo. After optimization of the shimming protocol, the spectral linewidths obtained after 2D localized shimming were compared with conventional techniques and published values from (Emir et al NMR Biomed 2012;25:152-160) in six different brain regions. RESULTS: Results on healthy volunteers show no significant difference (P > 0.5) between the spectroscopic linewidths obtained with the adiabatic (TA = 4 min) and the new low-SAR and time-efficient FASTMAP sequence (TA = 42 s). The SAR can be reduced by three orders of magnitude and TA accelerated six times without impact on the shimming performances or quality of the resulting spectra. CONCLUSION: Multidimensional pulses can be used to minimize the RF energy and time spent for automated shimming using projection mapping at high field. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
Renal excretion of water and major electrolytes exhibits a significant circadian rhythm. This functional periodicity is believed to result, at least in part, from circadian changes in secretion/reabsorption capacities of the distal nephron and collecting ducts. Here, we studied the molecular mechanisms underlying circadian rhythms in the distal nephron segments, i.e., distal convoluted tubule (DCT) and connecting tubule (CNT) and the cortical collecting duct (CCD). Temporal expression analysis performed on microdissected mouse DCT/CNT or CCD revealed a marked circadian rhythmicity in the expression of a large number of genes crucially involved in various homeostatic functions of the kidney. This analysis also revealed that both DCT/CNT and CCD possess an intrinsic circadian timing system characterized by robust oscillations in the expression of circadian core clock genes (clock, bma11, npas2, per, cry, nr1d1) and clock-controlled Par bZip transcriptional factors dbp, hlf, and tef. The clock knockout mice or mice devoid of dbp/hlf/tef (triple knockout) exhibit significant changes in renal expression of several key regulators of water or sodium balance (vasopressin V2 receptor, aquaporin-2, aquaporin-4, alphaENaC). Functionally, the loss of clock leads to a complex phenotype characterized by partial diabetes insipidus, dysregulation of sodium excretion rhythms, and a significant decrease in blood pressure. Collectively, this study uncovers a major role of molecular clock in renal function.
Resumo:
The regulation of gene expression is crucial for an organism's development and response to stress, and an understanding of the evolution of gene expression is of fundamental importance to basic and applied biology. To improve this understanding, we conducted expression quantitative trait locus (eQTL) mapping in the Tsu-1 (Tsushima, Japan) × Kas-1 (Kashmir, India) recombinant inbred line population of Arabidopsis thaliana across soil drying treatments. We then used genome resequencing data to evaluate whether genomic features (promoter polymorphism, recombination rate, gene length, and gene density) are associated with genes responding to the environment (E) or with genes with genetic variation (G) in gene expression in the form of eQTLs. We identified thousands of genes that responded to soil drying and hundreds of main-effect eQTLs. However, we identified very few statistically significant eQTLs that interacted with the soil drying treatment (GxE eQTL). Analysis of genome resequencing data revealed associations of several genomic features with G and E genes. In general, E genes had lower promoter diversity and local recombination rates. By contrast, genes with eQTLs (G) had significantly greater promoter diversity and were located in genomic regions with higher recombination. These results suggest that genomic architecture may play an important a role in the evolution of gene expression.
Resumo:
The paper presents the Multiple Kernel Learning (MKL) approach as a modelling and data exploratory tool and applies it to the problem of wind speed mapping. Support Vector Regression (SVR) is used to predict spatial variations of the mean wind speed from terrain features (slopes, terrain curvature, directional derivatives) generated at different spatial scales. Multiple Kernel Learning is applied to learn kernels for individual features and thematic feature subsets, both in the context of feature selection and optimal parameters determination. An empirical study on real-life data confirms the usefulness of MKL as a tool that enhances the interpretability of data-driven models.
Resumo:
Aims: To describe the drinking patterns and their baseline predictive factors during a 12-month period after an initial evaluation for alcohol treatment. Methods CONTROL is a single-center, prospective, observational study evaluating consecutive alcohol-dependent patients. Using a curve clustering methodology based on a polynomial regression mixture model, we identified three clusters of patients with dominant alcohol use patterns described as mostly abstainers, mostly moderate drinkers and mostly heavy drinkers. Multinomial logistic regression analysis was used to identify baseline factors (socio-demographic, alcohol dependence consequences and related factors) predictive of belonging to each drinking cluster. ResultsThe sample included 143 alcohol-dependent adults (63.6% males), mean age 44.6 ± 11.8 years. The clustering method identified 47 (32.9%) mostly abstainers, 56 (39.2%) mostly moderate drinkers and 40 (28.0%) mostly heavy drinkers. Multivariate analyses indicated that mild or severe depression at baseline predicted belonging to the mostly moderate drinkers cluster during follow-up (relative risk ratio (RRR) 2.42, CI [1.02-5.73, P = 0.045] P = 0.045), while living alone (RRR 2.78, CI [1.03-7.50], P = 0.044) and reporting more alcohol-related consequences (RRR 1.03, CI [1.01-1.05], P = 0.004) predicted belonging to the mostly heavy drinkers cluster during follow-up. Conclusion In this sample, the drinking patterns of alcohol-dependent patients were predicted by baseline factors, i.e. depression, living alone or alcohol-related consequences and findings that may inform clinicians about the likely drinking patterns of their alcohol-dependent patient over the year following the initial evaluation for alcohol treatment.
Resumo:
The diverse vertebrate remains from the Upper Cretaceous freshwater settings at Iharkut, Hungary, contain two fossil groups, Pycnodontiformes fish and Mosasauridae that are almost exclusively known from marine palaeo-environments. Hence, their appearance in alluvial sediments is very unusual. Trace element and isotope compositions of the remains have been analyzed to investigate the taphonomy and the ecological differences among the different fossil groups present at Iharkut. All examined fossils have undergone post-depositional diagenetic alteration, which resulted in high concentrations of REE, U, and Fe, together with almost complete homogenization of delta(18)O(CO3) values. Similar REE patterns in different fossils suggest a common origin for all remains, hence the discovered species most likely lived in the same local ecosystem. Despite partial diagenetic overprinting, the delta(18)O(PO4) values of the fossils indicate sufficient taxon-specific isotopic diversity to permit some broad conclusions on the palaeo-environment of the fossils. In particular, it is apparent that the isotopic composition of the Pycnodontiformes fish and Mosasauridae remains is most compatible with a freshwater palaeo-habitat and incompatible with a marine palaeo-environment. In addition, the Sr concentration and isotope data indicate that the Pycnodontiformes and Mosasauridae likely lived predominantly in a freshwater environment and were not simply occasional visitors to the Iharkut river ecosystem. Regarding other fossil groups, high delta(18)O(PO4) values of Alligatoroidea and Iharkutosuchus teeth suggest that these small crocodile species might have inhabited swamps and ponds where the water was relatively rich in (18)O due to evaporation. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
In a recent paper, Komaki studied the second-order asymptotic properties of predictive distributions, using the Kullback-Leibler divergence as a loss function. He showed that estimative distributions with asymptotically efficient estimators can be improved by predictive distributions that do not belong to the model. The model is assumed to be a multidimensional curved exponential family. In this paper we generalize the result assuming as a loss function any f divergence. A relationship arises between alpha connections and optimal predictive distributions. In particular, using an alpha divergence to measure the goodness of a predictive distribution, the optimal shift of the estimate distribution is related to alpha-covariant derivatives. The expression that we obtain for the asymptotic risk is also useful to study the higher-order asymptotic properties of an estimator, in the mentioned class of loss functions.
Resumo:
nd items. Once maps are drawn up they are digitized and put into a GIS and finally subjected to quality control. Table 4 shows the most important habitats (according to polygon number and area covered) and the least represented habitats in the sheets drawn so far. Sheets can be obtained through internet (www.gencat.net/mediamb/pn.htm).
Resumo:
diverse and in most cases including lakes, snow beds and fens.
Resumo:
Human-induced habitat fragmentation constitutes a major threat to biodiversity. Both genetic and demographic factors combine to drive small and isolated populations into extinction vortices. Nevertheless, the deleterious effects of inbreeding and drift load may depend on population structure, migration patterns, and mating systems and are difficult to predict in the absence of crossing experiments. We performed stochastic individual-based simulations aimed at predicting the effects of deleterious mutations on population fitness (offspring viability and median time to extinction) under a variety of settings (landscape configurations, migration models, and mating systems) on the basis of easy-to-collect demographic and genetic information. Pooling all simulations, a large part (70%) of variance in offspring viability was explained by a combination of genetic structure (F(ST)) and within-deme heterozygosity (H(S)). A similar part of variance in median time to extinction was explained by a combination of local population size (N) and heterozygosity (H(S)). In both cases the predictive power increased above 80% when information on mating systems was available. These results provide robust predictive models to evaluate the viability prospects of fragmented populations.
Resumo:
Recent advances in remote sensing technologies have facilitated the generation of very high resolution (VHR) environmental data. Exploratory studies suggested that, if used in species distribution models (SDMs), these data should enable modelling species' micro-habitats and allow improving predictions for fine-scale biodiversity management. In the present study, we tested the influence, in SDMs, of predictors derived from a VHR digital elevation model (DEM) by comparing the predictive power of models for 239 plant species and their assemblages fitted at six different resolutions in the Swiss Alps. We also tested whether changes of the model quality for a species is related to its functional and ecological characteristics. Refining the resolution only contributed to slight improvement of the models for more than half of the examined species, with the best results obtained at 5 m, but no significant improvement was observed, on average, across all species. Contrary to our expectations, we could not consistently correlate the changes in model performance with species characteristics such as vegetation height. Temperature, the most important variable in the SDMs across the different resolutions, did not contribute any substantial improvement. Our results suggest that improving resolution of topographic data only is not sufficient to improve SDM predictions - and therefore local management - compared to previously used resolutions (here 25 and 100 m). More effort should be dedicated now to conduct finer-scale in-situ environmental measurements (e.g. for temperature, moisture, snow) to obtain improved environmental measurements for fine-scale species mapping and management.