1000 resultados para order n
Resumo:
Nonpolar a-plane [(1120)] GaN samples have been grown on r-plane [(1102)] sapphire substrates by low-pressure metal-organic chemical-vapor deposition. The room-temperature first and second order Raman scattering spectra of nonpolar a-plane GaN have been measured in surface and edge backscattering geometries. All of the phonon modes that the selection rules allow have been observed in the first order Raman spectra. The frequencies and linewidths of the active modes have been analyzed. The second order phonon modes are composed of acoustic overtones, acoustic-optical and optical-optical combination bands, and optical overtones. The corresponding assignments of second order phonon modes have been made. (c) 2007 American Institute of Physics.
Resumo:
This paper presents a direct digital frequency synthesizer (DDFS) with a 16-bit accumulator, a fourth-order phase domain single-stage Delta Sigma interpolator, and a 300-MS/s 12-bit current-steering DAC based on the Q(2) Random Walk switching scheme. The Delta Sigma interpolator is used to reduce the phase truncation error and the ROM size. The implemented fourth-order single-stage Delta Sigma noise shaper reduces the effective phase bits by four and reduces the ROM size by 16 times. The DDFS prototype is fabricated in a 0.35-mu m CMOS technology with active area of 1.11 mm(2) including a 12-bit DAC. The measured DDFS spurious-free dynamic range (SFDR) is greater than 78 dB using a reduced ROM with 8-bit phase, 12-bit amplitude resolution and a size of 0.09 mm(2). The total power consumption of the DDFS is 200)mW with a 3.3-V power supply.
Resumo:
A novel line-order of InAs quantum dots (QDs) along the [1, 1, 0] direction on GaAs substrate has been prepared by self-organized growth. After 2.5 monolayer InAs deposition, QDs in the first layer of multi-layer samples started to gather in a line. Owing to the action of strong stress between layers, almost all the dots of the fourth layer gathered in lines. The dots lining up tightly are actually one-dimensional superlattice of QDs, of which the density of electronic states is different from that of isolated QDs or quantum wires. The photoluminescence spectra of our multi-layer QD sample exhibited a feature of very broad band so that it is suitable for the active medium of super luminescent diode. The reason of dots lining up is attributed to the hill-and-valley structure of the buffer, anisotropy and different diffusion rates in the different directions on the buffer and strong stress between QD layers. (C) 2002 Published by Elsevier Science B. V.
Resumo:
The polyetherketone (PEK-c) guest-host system thin films doped with 3-(1,1-dicyanothenyl)-1-phenyl-4,5-dihydro-1H-pryazole (DCNP) were prepared. Their second-order nonlinear optical (NLO) coefficients chi(33)((2)) were measured by using Maker fringe method for the polymer films doped with different weight percents of DCNP. Experimental results indicate that the second-order NLO properties of the poled polymer films could decrease with the chromophore loading increasing when the chromophore loading reaches a fairly high level. In this paper, the relationship between the macroscopic second-order NLO coefficient and the chromophore number density was modified under considering the role of the electrostatic interactions of chromophores in the polymer film. According to the modified relationship, the macroscopic second-order NLO coefficient is no longer in direct proportion with the chromophore number density in the polymer film. The effect of the electrostatic interactions of chromophores on second-order NLO properties was discussed. The attenuation of the macroscopic second-order NLO activity can be demonstrated by the role of the chromophore electrostatic interactions at high loading of chromophore in the polymer systems.
Resumo:
A novel monomer, (trans)-7-[4-N,N-(di-beta-hydroxyethyl) amino-benzene]-ethenyl-3,5-dinitrothiophene (HBDT), and the corresponding prepolymer, polyurethane were synthesized and characterized. The details of synthesis of the monomer and its further polymerization were presented. The prepolymer and polyurethane exhibited good thermal stability and good solubility in common organic solvents. The d(33) coefficient of the poled films was determined to be 40.3 pm/V. (C) 2000 Kluwer Academic Publishers.
Resumo:
A systematic investigation of structure and intrinsic magnetic properties of the compounds Sm3Fe29-xTx (T = V and Cr) and their nitrides has been performed. Nitrogenation resulted in remarkable improvements in the saturation magnetization and anisotropy fields at 4.2 K and room temperature. First order magnetization processes are observed at around 5.7 T for Sm3Fe26.7V2.3 and around 2.8 T for Sm3Fe24.0Cr5.0 and Sm3Fe24.0Cr5.0N4, respectively. The spin reorientation of the easy magnetization direction of Sm3Fe26.7V2.3 is observed at around 230 K. As a preliminary result, the maximum remanence B-r of 0.94 T, the coercivity mu(0)H(C) of 0.75 T, and the maximum energy product (BH) of 108.5 kJ/m(3) for the nitride magnet Sm3Fe26.7V2.3N4 are achieved by ball-milling at 293 K.
Resumo:
This paper presents a direct digital frequency synthesizer (DDFS) with a 16-bit accumulator, a fourth-order phase domain single-stage Delta Sigma interpolator, and a 300-MS/s 12-bit current-steering DAC based on the Q(2) Random Walk switching scheme. The Delta Sigma interpolator is used to reduce the phase truncation error and the ROM size. The implemented fourth-order single-stage Delta Sigma noise shaper reduces the effective phase bits by four and reduces the ROM size by 16 times. The DDFS prototype is fabricated in a 0.35-mu m CMOS technology with active area of 1.11 mm(2) including a 12-bit DAC. The measured DDFS spurious-free dynamic range (SFDR) is greater than 78 dB using a reduced ROM with 8-bit phase, 12-bit amplitude resolution and a size of 0.09 mm(2). The total power consumption of the DDFS is 200)mW with a 3.3-V power supply.
Resumo:
Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-06-04T08:05:17Z No. of bitstreams: 1 High-Order Microring Filters on SOI Wafer.pdf: 236326 bytes, checksum: dea85274da2a205a54b8a46049db9c94 (MD5)
Resumo:
National Natural Science Foundation of China; Public Administration and Civil Service Bureau of Macau SAR; Companhia de Telecomunicacoes de Macau S.A.R.L.; Macau SAR Government Tourist Office
Resumo:
Often it is assumed that absorbance decays in photochromic materials with the time dependence of the photochemical kinetics, i.e. exponentially for first order kinetics. Although this may hold in the limiting case of vanishing absorbance, deviations are to be expected for realistic samples, because the local photochemical kinetics slows down with increasing initial absorption and penetration depth of the radiation. We discuss the theory of the kinetics of initially homogeneous photochromic samples and derive analytical solutions. In extension of Tomlinson's theory we find an analytical solution that holds with good approximation even for samples that exhibit a small residual absorption in the saturation limit. The theoretical time dependence of the absorbance originating from photochemical first order kinetics of dye-doped systems is compared with experimental data published by Lafond et al. for fulgides doped in different polymer matrices. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Based on the phase-conjugation polarization interference between two two-photon processes, we theoretically investigated the attosecond scale asymmetry sum-frequency polarization beat in four-level system (FASPB). The field correlation has weak influence on the FASPB signal when the laser has narrow bandwidth. Conversely, when the laser has broadband linewidth, the FASPB signal shows resonance-nonresonance cross correlation. The two-photon signal exhibits hybrid radiation-matter detuning terahertz; damping oscillation, i.e., when the laser frequency is off resonance from the two-photon transition, the signal exhibits damping oscillation and the profile of the two-photon self-correlation signal also exhibits zero time-delay asymmetry of the maxima. We have also investigated the asymmetry of attosecond polarization beat caused by the shift of the two-photon self-correlation zero time-delay phenomenon, in which the maxima of the two two-photon signals are shifted from zero time-delay point to opposite directions. As an attosecond ultrafast modulation process, FASPB can be intrinsically extended to any level-summation systems of two dipolar forbidden excited states.