895 resultados para optimal control design
Resumo:
We prove the approximate controllability of the semilinear heat equation in RN, when the nonlinear term is globally Lipschitz and depends both on the state u and its spatial gradient Ñu. The approximate controllability is viewed as the limit of a sequence of optimal control problems. In order to avoid the difficulties related to the lack of compactness of the Sobolev embeddings, we work with the similarity variables and use weighted Sobolev spaces.
Resumo:
Pós-graduação em Biometria - IBB
Resumo:
Pós-graduação em Biometria - IBB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The article investigates complex impulsive systems in which the so-called controlling systems jumps effect emerges. In particular, this research includes the correctness of the solution to the impulsive control system and approximation lemmas. A 3D model example is provided which illustrates the relevance of the considered approach to the study of complex impulsive systems.
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
The role played by the attainable set of a differential inclusion, in the study of dynamic control systems and fuzzy differential equations, is widely acknowledged. A procedure for estimating the attainable set is rather complicated compared to the numerical methods for differential equations. This article addresses an alternative approach, based on an optimal control tool, to obtain a description of the attainable sets of differential inclusions. In particular, we obtain an exact delineation of the attainable set for a large class of nonlinear differential inclusions.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)