893 resultados para noisy speaker verification
Resumo:
Histograms of Oriented Gradients (HoGs) provide excellent results in object detection and verification. However, their demanding processing requirements bound their applicability in some critical real-time scenarios, such as for video-based on-board vehicle detection systems. In this work, an efficient HOG configuration for pose-based on-board vehicle verification is proposed, which alleviates both the processing requirements and required feature vector length without reducing classification performance. The impact on classification of some critical configuration and processing parameters is in depth analyzed to propose a baseline efficient descriptor. Based on the analysis of its cells contribution to classification, new view-dependent cell-configuration patterns are proposed, resulting in reduced descriptors which provide an excellent balance between performance and computational requirements, rendering higher verification rates than other works in the literature.
Resumo:
Vision-based object detection from a moving platform becomes particularly challenging in the field of advanced driver assistance systems (ADAS). In this context, onboard vision-based vehicle verification strategies become critical, facing challenges derived from the variability of vehicles appearance, illumination, and vehicle speed. In this paper, an optimized HOG configuration for onboard vehicle verification is proposed which not only considers its spatial and orientation resolution, but descriptor processing strategies and classification. An in-depth analysis of the optimal settings for HOG for onboard vehicle verification is presented, in the context of SVM classification with different kernels. In contrast to many existing approaches, the evaluation is realized in a public and heterogeneous database of vehicle and non-vehicle images in different areas of the road, rendering excellent verification rates that outperform other similar approaches in the literature.
Resumo:
Los tipos de datos concurrentes son implementaciones concurrentes de las abstracciones de datos clásicas, con la diferencia de que han sido específicamente diseñados para aprovechar el gran paralelismo disponible en las modernas arquitecturas multiprocesador y multinúcleo. La correcta manipulación de los tipos de datos concurrentes resulta esencial para demostrar la completa corrección de los sistemas de software que los utilizan. Una de las mayores dificultades a la hora de diseñar y verificar tipos de datos concurrentes surge de la necesidad de tener que razonar acerca de un número arbitrario de procesos que invocan estos tipos de datos de manera concurrente. Esto requiere considerar sistemas parametrizados. En este trabajo estudiamos la verificación formal de propiedades temporales de sistemas concurrentes parametrizados, poniendo especial énfasis en programas que manipulan estructuras de datos concurrentes. La principal dificultad a la hora de razonar acerca de sistemas concurrentes parametrizados proviene de la interacción entre el gran nivel de concurrencia que éstos poseen y la necesidad de razonar al mismo tiempo acerca de la memoria dinámica. La verificación de sistemas parametrizados resulta en sí un problema desafiante debido a que requiere razonar acerca de estructuras de datos complejas que son accedidas y modificadas por un numero ilimitado de procesos que manipulan de manera simultánea el contenido de la memoria dinámica empleando métodos de sincronización poco estructurados. En este trabajo, presentamos un marco formal basado en métodos deductivos capaz de ocuparse de la verificación de propiedades de safety y liveness de sistemas concurrentes parametrizados que manejan estructuras de datos complejas. Nuestro marco formal incluye reglas de prueba y técnicas especialmente adaptadas para sistemas parametrizados, las cuales trabajan en colaboración con procedimientos de decisión especialmente diseñados para analizar complejas estructuras de datos concurrentes. Un aspecto novedoso de nuestro marco formal es que efectúa una clara diferenciación entre el análisis del flujo de control del programa y el análisis de los datos que se manejan. El flujo de control del programa se analiza utilizando reglas de prueba y técnicas de verificación deductivas especialmente diseñadas para lidiar con sistemas parametrizados. Comenzando a partir de un programa concurrente y la especificación de una propiedad temporal, nuestras técnicas deductivas son capaces de generar un conjunto finito de condiciones de verificación cuya validez implican la satisfacción de dicha especificación temporal por parte de cualquier sistema, sin importar el número de procesos que formen parte del sistema. Las condiciones de verificación generadas se corresponden con los datos manipulados. Estudiamos el diseño de procedimientos de decisión especializados capaces de lidiar con estas condiciones de verificación de manera completamente automática. Investigamos teorías decidibles capaces de describir propiedades de tipos de datos complejos que manipulan punteros, tales como implementaciones imperativas de pilas, colas, listas y skiplists. Para cada una de estas teorías presentamos un procedimiento de decisión y una implementación práctica construida sobre SMT solvers. Estos procedimientos de decisión son finalmente utilizados para verificar de manera automática las condiciones de verificación generadas por nuestras técnicas de verificación parametrizada. Para concluir, demostramos como utilizando nuestro marco formal es posible probar no solo propiedades de safety sino además de liveness en algunas versiones de protocolos de exclusión mutua y programas que manipulan estructuras de datos concurrentes. El enfoque que presentamos en este trabajo resulta ser muy general y puede ser aplicado para verificar un amplio rango de tipos de datos concurrentes similares. Abstract Concurrent data types are concurrent implementations of classical data abstractions, specifically designed to exploit the great deal of parallelism available in modern multiprocessor and multi-core architectures. The correct manipulation of concurrent data types is essential for the overall correctness of the software system built using them. A major difficulty in designing and verifying concurrent data types arises by the need to reason about any number of threads invoking the data type simultaneously, which requires considering parametrized systems. In this work we study the formal verification of temporal properties of parametrized concurrent systems, with a special focus on programs that manipulate concurrent data structures. The main difficulty to reason about concurrent parametrized systems comes from the combination of their inherently high concurrency and the manipulation of dynamic memory. This parametrized verification problem is very challenging, because it requires to reason about complex concurrent data structures being accessed and modified by threads which simultaneously manipulate the heap using unstructured synchronization methods. In this work, we present a formal framework based on deductive methods which is capable of dealing with the verification of safety and liveness properties of concurrent parametrized systems that manipulate complex data structures. Our framework includes special proof rules and techniques adapted for parametrized systems which work in collaboration with specialized decision procedures for complex data structures. A novel aspect of our framework is that it cleanly differentiates the analysis of the program control flow from the analysis of the data being manipulated. The program control flow is analyzed using deductive proof rules and verification techniques specifically designed for coping with parametrized systems. Starting from a concurrent program and a temporal specification, our techniques generate a finite collection of verification conditions whose validity entails the satisfaction of the temporal specification by any client system, in spite of the number of threads. The verification conditions correspond to the data manipulation. We study the design of specialized decision procedures to deal with these verification conditions fully automatically. We investigate decidable theories capable of describing rich properties of complex pointer based data types such as stacks, queues, lists and skiplists. For each of these theories we present a decision procedure, and its practical implementation on top of existing SMT solvers. These decision procedures are ultimately used for automatically verifying the verification conditions generated by our specialized parametrized verification techniques. Finally, we show how using our framework it is possible to prove not only safety but also liveness properties of concurrent versions of some mutual exclusion protocols and programs that manipulate concurrent data structures. The approach we present in this work is very general, and can be applied to verify a wide range of similar concurrent data types.
Resumo:
This Droppin' Knowledge Lecture Series will challenge the audience to "defy the impossible". Dr. Venus Opal Reese will offer insight on how to achieve success on Thursday, September 17, at 6:30pm in Martin Luther King Hall-Thomas Pawley Theature, 812 E. Dunklin Street. Reese, an inspirational speaker, business mentor and marketing strategist, offers training to professionals, particularly entrepreneurs and executives, on how to "defy their impossible" to reach million-dollar success. Reese has consulted for O Magazines, and appeared on ABC and CBS News. For more information on Dr. Venus Opal Reese, please visit http://defyimpossible.com.
Resumo:
Amino acid sequencing by recombinant DNA technology, although dramatically useful, is subject to base reading errors, is indirect, and is insensitive to posttranslational processing. Mass spectrometry techniques can provide molecular weight data from even relatively large proteins for such cDNA sequences and can serve as a check of an enzyme's purity and sequence integrity. Multiply-charged ions from electrospray ionization can be dissociated to yield structural information by tandem mass spectrometry, providing a second method for gaining additional confidence in primary sequence confirmation. Here, accurate (+/- 1 Da) molecular weight and molecular ion dissociation information for human muscle and brain creatine kinases has been obtained by electrospray ionization coupled with Fourier-transform mass spectrometry to help distinguish which of several published amino acid sequences for both enzymes are correct. The results herein are consistent with one published sequence for each isozyme, and the heterogeneity indicated by isoelectric focusing due to 1-Da deamidation changes. This approach appears generally useful for detailed sequence verification of recombinant proteins.
Resumo:
Speech interface technology, which includes automatic speech recognition, synthetic speech, and natural language processing, is beginning to have a significant impact on business and personal computer use. Today, powerful and inexpensive microprocessors and improved algorithms are driving commercial applications in computer command, consumer, data entry, speech-to-text, telephone, and voice verification. Robust speaker-independent recognition systems for command and navigation in personal computers are now available; telephone-based transaction and database inquiry systems using both speech synthesis and recognition are coming into use. Large-vocabulary speech interface systems for document creation and read-aloud proofing are expanding beyond niche markets. Today's applications represent a small preview of a rich future for speech interface technology that will eventually replace keyboards with microphones and loud-speakers to give easy accessibility to increasingly intelligent machines.
Resumo:
The sources of noise that limit olfactory signal detection were investigated in dissociated rat olfactory receptor cells. Near-threshold odorant-evoked currents exhibited large random fluctuation. However, similar fluctuations were observed in the absence of applied odorants when currents were induced by elevating the intracellular cyclic AMP concentration. This suggests that the fluctuations reflect noise intrinsic to the transduction mechanism, rather than the quantal nature of an odorant stimulus. For many odorants, this intrinsic noise may preclude the reliable detection of single odorant molecules.
Resumo:
A new method for fitting a series of Zernike polynomials to point clouds defined over connected domains of arbitrary shape defined within the unit circle is presented in this work. The method is based on the application of machine learning fitting techniques by constructing an extended training set in order to ensure the smooth variation of local curvature over the whole domain. Therefore this technique is best suited for fitting points corresponding to ophthalmic lenses surfaces, particularly progressive power ones, in non-regular domains. We have tested our method by fitting numerical and real surfaces reaching an accuracy of 1 micron in elevation and 0.1 D in local curvature in agreement with the customary tolerances in the ophthalmic manufacturing industry.
Resumo:
Los métodos para Extracción de Información basados en la Supervisión a Distancia se basan en usar tuplas correctas para adquirir menciones de esas tuplas, y así entrenar un sistema tradicional de extracción de información supervisado. En este artículo analizamos las fuentes de ruido en las menciones, y exploramos métodos sencillos para filtrar menciones ruidosas. Los resultados demuestran que combinando el filtrado de tuplas por frecuencia, la información mutua y la eliminación de menciones lejos de los centroides de sus respectivas etiquetas mejora los resultados de dos modelos de extracción de información significativamente.
Resumo:
3D sensors provides valuable information for mobile robotic tasks like scene classification or object recognition, but these sensors often produce noisy data that makes impossible applying classical keypoint detection and feature extraction techniques. Therefore, noise removal and downsampling have become essential steps in 3D data processing. In this work, we propose the use of a 3D filtering and down-sampling technique based on a Growing Neural Gas (GNG) network. GNG method is able to deal with outliers presents in the input data. These features allows to represent 3D spaces, obtaining an induced Delaunay Triangulation of the input space. Experiments show how the state-of-the-art keypoint detectors improve their performance using GNG output representation as input data. Descriptors extracted on improved keypoints perform better matching in robotics applications as 3D scene registration.