951 resultados para metal (II)-azo complex
Resumo:
This review deals with metal enolate-mediated stereoselective acetate aldol reactions. It summarizes recent advances on aldol additions of unsubstituted metal enolates from chiral auxiliaries, stoichiometric and catalytic Lewis acids, or acting in substrate- controlled reactions, which provide stereocontrolled aldol transformations that allow the efficient synthesis of structurally complex natural products.
Resumo:
Pseudomonas aeruginosa chronic lung infections are the leading cause of mortality in cystic fibrosis patients, a serious problem which is notably due to the numerous P. aeruginosa virulence factors, to its ability to form biofilms and to resist the effects of most antibiotics. Production of virulence factors and biofilm formation by P. aeruginosa is highly coordinated through complex regulatory systems. We recently found that CzcRS, the zinc and cadmium-specific two-component system is not only involved in metal resistance, but also in virulence and carbapenem antibiotic resistance in P. aeruginosa. Interestingly, zinc has been shown to be enriched in the lung secretions of cystic fibrosis patients. In this study, we investigated whether zinc might favor P. aeruginosa pathogenicity using an artificial sputum medium to mimic the cystic fibrosis lung environment. Our results show that zinc supplementation triggers a dual P. aeruginosa response: (i) it exacerbates pathogenicity by a CzcRS two-component system-dependent mechanism and (ii) it stimulates biofilm formation by a CzcRS-independent mechanism. Furthermore, P. aeruginosa cells embedded in these biofilms exhibited increased resistance to carbapenems. We identified a novel Zn-sensitive regulatory circuit controlling the expression of the OprD porin and modifying the carbapenem resistance profile. Altogether our data demonstrated that zinc levels in the sputum of cystic fibrosis patients might aggravate P. aeruginosa infection. Targeting zinc levels in sputum would be a valuable strategy to curb the increasing burden of P. aeruginosa infections in cystic fibrosis patients.
Resumo:
The study of the reactivity of three 1-(2-dimethylaminoethyl)-1H-pyrazole derivatives of general formula [1-(CH2)2NMe2}-3,5-R2-pzol] {where pzol represents pyrazole and Rdouble bond; length as m-dashH (1a), Me (1b) or Ph (1c)} with [MCl2(DMSO)2] (Mdouble bond; length as m-dashPt or Pd) under different experimental conditions allowed us to isolate and characterize cis-[M{κ2-N,N′-{[1-(CH2)2NMe2}-3,5-R2-pzol])}Cl2] {MMdouble bond; length as m-dashPtPt (2a-2c) or Pd (3a-3c)} and two cyclometallated complexes [M{κ3-C,N,N′-{[1-(CH2)2NMe2}-3-(C5H4)-5-Ph-pzol])}Cl] {Mdouble bond; length as m-dashPt(II) (4c) or Pd(II) (5c)}. Compounds 4c and 5c arise from the orthometallation of the 3-phenyl ring of ligand 1c. Complex 2a has been further characterized by X-ray crystallography. Ligands and complexes were evaluated for their in vitro antimalarial against Plasmodium falciparum and cytotoxic activities against lung (A549) and breast (MDA MB231 and MCF7) cancer cellular lines. Complexes 2a-2c and 5c exhibited only moderate antimalarial activities against two P. falciparum strains (3D7 and W2). Interestingly, cytotoxicity assays revealed that the platinacycle 4c exhibits a higher toxicity than cisplatin in the three human cell lines and that the complex 2a presents a remarkable cytotoxicity and selectivity in lung (IC50 = 3 μM) versus breast cancer cell lines (IC50 > 20 μM). Thus, complexes 2c and 4c appear to be promising leads, creating a novel family of anticancer agents. Electrophoretic DNA migration studies in presence of the synthesized compounds have been performed, in order to get further insights into their mechanism of action.
Resumo:
Non-vertebrate chordates, specifically amphioxus, are considered of the utmost interest for gaining insight into the evolutionary trends, i.e. differentiation and specialization, of gene/protein systems. In this work, MTs (metallothioneins), the most important metal binding proteins, are characterized for the first time in the cephalochordate subphylum at both gene and protein level, together with the main features defining the amphioxus response to cadmium and copper overload. Two MT genes (BfMT1 and BfMT2) have been identified in a contiguous region of the genome, as well as several ARE (antioxidant response element) and MRE (metal response element) located upstream the transcribed region. Their corresponding cDNAs exhibit identical sequence in the two lancelet species (B. floridae and B. lanceolatum), BfMT2 cDNA resulting from an alternative splicing event. BfMT1 is a polyvalent metal binding peptide that coordinates any of the studied metal ions (Zn, Cd or Cu) rendering complexes stable enough to last in physiological environments, which is fully concordant with the constitutive expression of its gene, and therefore, with a metal homeostasis housekeeping role. On the contrary, BfMT2 exhibits a clear ability to coordinate Cd(II) ions, while it is absolutely unable to fold into stable Cu (I) complexes, even as mixed species. This identifies it as an essential detoxification agent, which is consequently only induced in emergency situations. The cephalochordate MTs are not directly related to vertebrate MTs, neither by gene structure, protein similarity nor metal-binding behavior of the encoded peptides. The closest relative is the echinoderm MT, which confirm proposed phylogenetic relationships between these two groups. The current findings support the existence in most organisms of two types of MTs as for their metal binding preferences, devoted to different biological functions: multivalent MTs for housekeeping roles, and specialized MTs that evolve either as Cd-thioneins or Cu-thioneins, according to the ecophysiological needs of each kind of organisms.
Resumo:
Nanoantennae show potential for photosynthesis research for two reasons; first by spatially confining light for experiments which require high spatial resolution, and second by enhancing the photon emission of single light-harvesting complexes. For effective use of nanoantennae a detailed understanding of the interaction between the nanoantenna and the light-harvesting complex is required. Here we report how the excitation and emission of multiple purple bacterial LH2s (light-harvesting complex 2) are controlled by single gold nanorod antennae. LH2 complexes were chemically attached to such antennae, and the antenna length was systematically varied to tune the resonance with respect to the LH2 absorption and emission. There are three main findings. (i) The polarization of the LH2 emission is fully controlled by the resonant nanoantenna. (ii) The largest fluorescence enhancement, of 23 times, is reached for excitation with light at λ = 850 nm, polarized along the long antenna-axis of the resonant antenna. The excitation enhancement is found to be 6 times, while the emission efficiency is increased 3.6 times. (iii) The fluorescence lifetime of LH2 depends strongly on the antenna length, with shortest lifetimes of [similar]40 ps for the resonant antenna. The lifetime shortening arises from an 11 times resonant enhancement of the radiative rate, together with a 2–3 times increase of the non-radiative rate, compared to the off-resonant antenna. The observed length dependence of radiative and non-radiative rate enhancement is in good agreement with simulations. Overall this work gives a complete picture of how the excitation and emission of multi-pigment light-harvesting complexes are influenced by a dipole nanoantenna.
Resumo:
A general overview on the photochemical behaviour of [Ru(NH3)5L]2+ complexes (where L is a p ligand) is presented. The proposed mechanisms and techniques employed for the study of these reactions are discussed. Emphasis is made on the mechanisms that allow the identification of the reactive excited state of the [Ru(NH3)5py]2+ complex.
Resumo:
This work describes the techniques of construction and several applications of ultramicroelectrodes in electrochemistry and electroanalytical chemistry. Disc shaped UME are produced by embedding metal wires on insulating materials such as glass or epoxy resin. In the field of electrochemistry, UME have been applied in studies of the hydrogen evolution reaction and the electrocrystallization of metals. The negligible values of sensibility for ohmic drop and the enhanced mass transport rate by spherical diffusion are the main advantages of UME in these applications. New important conclusions regarding the phenomena under study were drawn from the experimental results. The applications in electroanalytical chemistry involved the determination of contaminants such as heavy metals and nitrites in natural waters and food products. The use of UME requires little sample manipulation and, in general, no need for oxygen removal or the addition of supporting electrolytes.
Resumo:
The alizarin red S (ARS) has been used as a spectrophotometric reagent of several metals for a long time. Now this alizarin has been used as modifier agent of electrodes, for voltammetric analyses. In this work cyclic voltammetry experiments was accomplished on closed circuit, with the objective of studying the voltammetric behavior of alizarin red S adsorbed and of its copper complex, on the surface of the pyrolytic graphite electrode. These studies showed that ARS strongly adsorbs on the surface of this electrode. This adsorption was used to immobilize ions copper(II) from the solution.
Resumo:
Members of the bacterial genus Streptomyces are well known for their ability to produce an exceptionally wide selection of diverse secondary metabolites. These include natural bioactive chemical compounds which have potential applications in medicine, agriculture and other fields of commerce. The outstanding biosynthetic capacity derives from the characteristic genetic flexibility of Streptomyces secondary metabolism pathways: i) Clustering of the biosynthetic genes in chromosome regions redundant for vital primary functions, and ii) the presence of numerous genetic elements within these regions which facilitate DNA rearrangement and transfer between non-progeny species. Decades of intensive genetic research on the organization and function of the biosynthetic routes has led to a variety of molecular biology applications, which can be used to expand the diversity of compounds synthesized. These include techniques which, for example, allow modification and artificial construction of novel pathways, and enable gene-level detection of silent secondary metabolite clusters. Over the years the research has expanded to cover molecular-level analysis of the enzymes responsible for the individual catalytic reactions. In vitro studies of the enzymes provide a detailed insight into their catalytic functions, mechanisms, substrate specificities, interactions and stereochemical determinants. These are factors that are essential for the thorough understanding and rational design of novel biosynthetic routes. The current study is a part of a more extensive research project (Antibiotic Biosynthetic Enzymes; www.sci.utu.fi/projects/biokemia/abe), which focuses on the post-PKS tailoring enzymes involved in various type II aromatic polyketide biosynthetic pathways in Streptomyces bacteria. The initiative here was to investigate specific catalytic steps in anthracycline and angucycline biosynthesis through in vitro biochemical enzyme characterization and structural enzymology. The objectives were to elucidate detailed mechanisms and enzyme-level interactions which cannot be resolved by in vivo genetic studies alone. The first part of the experimental work concerns the homologous polyketide cyclases SnoaL and AknH. These catalyze the closure of the last carbon ring of the tetracyclic carbon frame common to all anthracycline-type compounds. The second part of the study primarily deals with tailoring enzymes PgaE (and its homolog CabE) and PgaM, which are responsible for a cascade of sequential modification reactions in angucycline biosynthesis. The results complemented earlier in vivo findings and confirmed the enzyme functions in vitro. Importantly, we were able to identify the amino acid -level determinants that influence AknH and SnoaL stereoselectivity and to determine the complex biosynthetic steps of the angucycline oxygenation cascade of PgaE and PgaM. In addition, the findings revealed interesting cases of enzyme-level adaptation, as some of the catalytic mechanisms did not coincide with those described for characterised homologs or enzymes of known function. Specifically, SnoaL and AknH were shown to employ a novel acid-base mechanism for aldol condenzation, whereas the hydroxylation reaction catalysed by PgaM involved unexpected oxygen chemistry. Owing to a gene-level fusion of two ancestral reading frames, PgaM was also shown to adopt an unusual quaternary sturucture, a non-covalent fusion complex of two alternative forms of the protein. Furthermore, the work highlighted some common themes encountered in polyketide biosynthetic pathways such as enzyme substrate specificity and intermediate reactivity. These are discussed in the final chapters of the work.
Resumo:
Stability constants of complexes formed by copper (II) with three different tetracyclines (tetracycline, oxytetracycline and chlortetracycline) have been determined potentiometrically with an automatic system in aqueous medium at 25,0 ± 0,2 ºC and I = 0,1 mol L-1 NaNO3. The protonation constants of the three tetracyclines were also determined under the same conditions. The distribution of the complexes was then simulated at therapeutic levels of the drugs.
Resumo:
The present experiment describes the preparation, characterization of n-butyl(pyridil)cobaloxime complex and its electrochemical property. The infrared and uv-visible absorption spectra were used to characterize the complex obtained. The infrared spectrum of the compound showed characteristics bands that indicated the formation of the Co-C chemical bond formation. The electronic absorption spectrum in acetonitrile showed transition bands attributed to p-p*, metal-to-ligand charge transfer, d-d transitions and charge transfer Co-C. The electrochemical property was investigated by the pulse differential voltammetry technique. Two oxidation processes: Co(I)/Co(II) at -423 mV and Co(II)/Co(III) at 752 mV were observed.
Resumo:
Some commercial samples of vermicompost from bovine manure (humus) were characterized by thermogravimetry with respect to humidity, organic matter and ash contents, the percentages of which range from 6.55 to 5.35%, 53.01 to 69.96% and 46.44 to 66,14%, respectively. The capacity of adsorption of Cu2+, Zn2+ and Co2+ ions by these samples has been evaluated as a function of pH and time. The contents of several metal ions in the original vermicompost samples have been determined by flame atomic absorption spectrometry after digestion in a microwave oven. The high nitrogen content suggests that the earthworms used in the maturation procedure lead to an efficient degradation of organic matter. The metal retention was affected by both pH and adsorption time. The results also show that adsorption follows the order Cu2+ > Zn2+ > Co2+.
Resumo:
The construction and analytical evaluation of a coated graphite-epoxy electrode sensitive to the zinc-1,10-phenantroline complex based on the [Zn(fen)3][tetrakis(4-chlorophenyl)borate]2 incorporated into a poly(vinylchloride) (PVC) matrix are described. A thin membrane film of this ion-pair, dibutylphthalate (DBPh) and PVC were deposited directly onto an electrically conductive graphite-epoxy support located inside a Perspex® tube. The best PVC polymeric membrane contains 65% (m/m) DBPh, 30% (m/m) PVC and 5% (m/m) of the ion-pair. This electrode shows a response of 19.5 mV dec-1 over the zinc(II) concentration range of 1.0 x 10-5 to 1.0 x 10-3 mol L-1 in 1,10-phenantroline medium, at pH 6.0. The response time was less than 20 seconds and the lifetime of this electrode was more than four months (over 1200 determinations by each polymeric membrane). It was successfully used as an indicator electrode in the potentiometric precipitation titration of zinc(II) ions.
Resumo:
Considerable attention has been paid to chitosan and derivatives as efficient adsorbents of pollutants such as metal ions and dyes in aqueous medium. Nevertheless, no report can be found on the remedial actions of chitosan microspheres crosslinked with tripolyphosphate to control acidity, iron (III) and manganese (II) contents in wastewaters from coal mining. In this work, chitosan microspheres crosslinked with tripolyphosphate were used for the neutralization of acidity and removal of Fe (III) and Mn (II) from coal mining wastewaters. The study involved static and dinamic methods. The neutralization capacity of the surface of the static system was 395 mmol of H3O+ per kilogram of microspheres, higher than that of the dynamic one (223 mmol kg-1). The removal of Fe(III) in wastewater was of 100% and that of Mn(II) was 90%.