930 resultados para mercury remediation
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Dissertação para obtenção do Grau de Mestre em Tecnologia e Segurança Alimentar
Resumo:
Zero valent iron nanoparticles (nZVI) are considered very promising for the remediation of contaminated soils and groundwaters. However, an important issue related to their limited mobility remains unsolved. Direct current can be used to enhance the nanoparticles transport, based on the same principles of electrokinetic remediation. In this work, a generalized physicochemical model was developed and solved numerically to describe the nZVI transport through porous media under electric field, and with different electrolytes (with different ionic strengths). The model consists of the Nernst–Planck coupled system of equations, which accounts for the mass balance of ionic species in a fluid medium, when both the diffusion and electromigration of the ions are considered. The diffusion and electrophoretic transport of the negatively charged nZVI particles were also considered in the system. The contribution of electroosmotic flow to the overall mass transport was included in the model for all cases. The nZVI effective mobility values in the porous medium are very low (10−7–10−4 cm2 V−1 s−1), due to the counterbalance between the positive electroosmotic flow and the electrophoretic transport of the negatively charged nanoparticles. The higher the nZVI concentration is in the matrix, the higher the aggregation; therefore, low concentration of nZVI suspensions must be used for successful field application.
Resumo:
O erro pode ser um sintoma da evolução do aluno, no entanto, a sua correção, quando mal gerida, pode provocar o efeito contrário, levando o erro a fossilizar-se. Nem todos os alunos apreciam a correção: enquanto alguns esperam ser corrigidos, outros evitam o erro ao não participar de forma ativa nas atividades e contexto de sala de aula. Assim sendo, nem todas as estratégias de correção e de remediação são bem recebidas por todos os alunos. Propomos, por essa razão, o recurso às novas tecnologias e aos jogos didáticos, de forma a motivar os alunos para a auto e heterocorreção, encarando o erro como parte do processo de aprendizagem.
Resumo:
O estudo sobre os textos escritos produzidos por alunos da 7ª classe em Angola foi estabelecido por nós com base na hipótese da existência de dificuldades de escrita. Há bastantes dúvidas entre os docentes angolanos sobre a capacidade dos alunos na elaboração de textos espontâneos. Desta forma, com o objectivo de conhecermos as capacidades de produção de textos escritos pelos alunos do ensino geral no Lubango, de elaborarmos uma tipologia de análise dos erros encontrados e de propormos estratégias de superação das dificuldades apresentadas nos textos dos alunos, fomos à Escola do I Ciclo do Ensino Secundário 27 de Março do Lubango – Huíla recolher as composições da Prova Trimestral para verificar as dificuldades de escrita apresentadas nos textos dos alunos. Partimos de 314 textos, dos quais foi extraída a amostra de 10%, correspondendo a 32 textos seleccionados através da tabela de números aleatórios. Os textos foram analisados com base na tipologia de erros de Sousa (1996). Desta forma, foram detectados erros de substituição, de omissão, de divisão/aglutinação, os quais foram muito significativos e ocorreram em 66,856% dos casos no total. Os erros de substituição maiúsculas/minúsculas, os de adição, de grafias homófonas constituem 30.856% dos casos. Confirmam-se as dificuldades apresentadas pelos alunos que devem merecer tratamento através das propostas de remediação apresentadas. As dificuldades encontradas nos textos destes alunos devem servir de base para a planificação da disciplina de Língua Portuguesa no Ensino Primário de forma a dotar o aluno de competências para a melhoria da comunicação escrita na sala de aula.
Resumo:
The interest in chromium (Cr) arises from the widespread use of this heavy metal in various industrial processes that cause its release as liquid, solid and gaseous waste into the environment. The impact of Cr on the environment and living organisms primarily depends on its chemical form, since Cr(III) is an essential micronutrient for humans, other animals and plants, and Cr(VI) is highly toxic and a known human carcinogen. This study aimed to evaluate if the electrodialytic process (ED) is an appropriate treatment for Cr removal, through a critical overview of Cr speciation, before and after the ED experiments, to assess possible Cr(III)-Cr(VI) interconversions during the treatment. ED was the treatment technique applied to two types of matrices containing Cr: chromate copper arsenate (CCA) contaminated soil and municipal solid waste incineration (MSWI) fly ash. In order to study Cr remediation, three EDR set-ups were used: a new set-up, the combined cell (2/3C or 3/2C), with three compartments, alternating current between two anodes and different initial experimental conditions, one set-up with three compartments (3C cell) and the other set-up with two compartments (2C cell). The Cr removal rates obtained in this study were between 10-36% for the soil, and 1-13% for the fly ash. The highest Cr removal rates were achieved in the 26 days experiments: 36% for the soil, 13% for the fly ash. Regarding the 13 days experiments, the highest Cr removal rates were attained with the 2/3C set-up: 24% for the soil, 5% for the fly ash. The analysis of Cr(VI) was performed before and after ED experiments to evaluate eventual changes in Cr speciation during the treatment. This analysis was conducted by two methods: USEPA Method 3060A, for the extraction of Cr(VI); and Hach Company Method 8023, for the detection of Cr(VI). Despite the differences in Cr total concentration, both matrices presented a similar speciation, with Cr(III) being the main species found and Cr(VI) less than 3% of Cr total, before and after the treatment. For fly ash, Cr(VI) was initially below the detection limit of the method and remained that way after the treatment. For soil, Cr(VI) decreased after the treatment. Oxidation of Cr(III) to Cr(VI) did not occur during the ED process since there was no increase in Cr(VI) in the matrices after the treatment. Hence, the results of this study indicate that ED is an appropriate technique to remediate matrices containing Cr because it contributes to Cr removal, without causing Cr(III)-Cr(VI) interconversions.
Resumo:
PURPOSE: To find out the prevalence of hypertension in employees of the Hospital and relate it to social demographic variables. METHODS: Blood pressure measurement was performed with a mercury sphygmomanometer, using an appropriate cuff size for arm circumference, weight, and height in a population sample of 864 individuals out of the 9,905 employees of a University General Hospital stratified by gender, age, and job position. RESULTS: Hypertension prevalence was 26% (62% of these reported being aware of their hypertension and 38% were unaware but had systolic/diastolic blood pressures of >140 and/or >90 mm Hg at the moment of the measurement). Of those who were aware of having hypertension, 51% were found to be hypertensive at the moment of the measurement. The prevalence was found to be 17%, 23%, and 29% (P <.05) in physicians, nursing staff, and "others", respectively. The univariate analysis showed a significant odds ratio for the male gender, age >50 years, work unit being the Institute of Radiology and the Administration Building, educational level
Resumo:
There is a need to develop viable techniques for removal and recovery organic and inorganic compounds from environmental matrices, due to their ecotoxicity, regulatory obligations or potential supplies as secondary materials. In this dissertation, electro –removal and –recovery techniques were applied to five different contaminated environmental matrices aiming phosphorus (P) recovery and/or contaminants removal. In a first phase, the electrokinetic process (EK) was carried out in soils for (i) metalloids and (ii) organic contaminants (OCs) removal. In the case of As and Sb mine contaminated soil, the EK process was additionally coupled with phytotechnologies. In a second phase, the electrodialytic process (ED) was applied to wastes aiming P recovery and simultaneous removal of (iii) toxins from membrane concentrate, (iv) heavy metals from sewage sludge ash (SSA), and (v) OCs from sewage sludge (SS). EK enhanced phytoremediation showed to be viable for the remediation of soils contaminated with metalloids, as although remediation was low, it combines advantages of both technologies while allowing site management. EK also proved to be an effective remediation technology for the removal and degradation of emerging OCs from two types of soil. Aiming P recovery and contaminants removal, different ED cell set-ups were tested. For the membrane concentrates, the best P recovery was achieved in a three compartment (3c) cell, but the highest toxin removal was obtained in a two compartment (2c) cell, placing the matrix in the cathode end. In the case of SSA the best approach for simultaneous P recovery and heavy metals removal was to use a 2c-cell placing the matrix in the anode end. However, for simultaneous P recovery and OCs removal, SS should be placed in the cathode end, in a 2c-cell. Overall, the data support that the selection of the cell design should be done case-by-case.
Resumo:
The present study aimed to investigate the effect of structure (design and porosity) on the matrix stiffness and osteogenic activity of stem cells cultured on poly(ester-urethane) (PEU) scaffolds. Different three-dimensional (3D) forms of scaffold were prepared from lysine-based PEU using traditional salt-leaching and advanced bioplotting techniques. The resulting scaffolds were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mercury porosimetry and mechanical testing. The scaffolds had various pore sizes with different designs, and all were thermally stable up to 300â °C. In vitrotests, carried out using rat bone marrow stem cells (BMSCs) for bone tissue engineering, demonstrated better viability and higher cell proliferation on bioplotted scaffolds compared to salt-leached ones, most probably due to their larger and interconnected pores and stiffer nature, as shown by higher compressive moduli, which were measured by compression testing. Similarly, SEM, von Kossa staining and EDX analyses indicated higher amounts of calcium deposition on bioplotted scaffolds during cell culture. It was concluded that the design with larger interconnected porosity and stiffness has an effect on the osteogenic activity of the stem cells.
Resumo:
Mycotoxins are fungal secondary metabolites found in some agricultural commodities which are toxic for humans and animals in small amounts. Mycotoxins are a global problem which can be partially controlled through prevention strategies that can be applied along the food and feed chain production. However, when mycotoxin formation can not be avoided and they come to be present in commodities some remediation strategies can also be used to reduce its levels on products, its bioavailability or its toxic effects. Among these remediation strategies, the biological methods are recently holding a relevant position, being widely studied in the last years. As a result, a great number of microorganisms that can degrade or detoxify several mycotoxins and the application of some of them were reported. Moreover, several enzymes which mediate these biological processes were identified, being by themselves studied in order to develop new biotechnological approaches to control the mycotoxin problem on commodities. The main enzymes known to detoxify ochratoxin A, their action and their present application in order to counteract the referred problem are reviewed and critically assessed.
Resumo:
OBJECTIVE: To evaluate the sphygmomanometers calibration accuracy and the physical conditions of the cuff-bladder, bulb, pump, and valve. METHODS: Sixty hundred and forty five aneroid sphygmomanometers were evaluated, 521 used in private practice and 124 used in hospitals. Aneroid manometers were tested against a properly calibrated mercury manometer and were considered calibrated when the error was <=3mm Hg. The physical conditions of the cuffs-bladder, bulb, pump, and valve were also evaluated. RESULTS: Of the aneroid sphygmomanometers tested, 51% of those used in private practice and 56% of those used in hospitals were found to be not accurately calibrated. Of these, the magnitude of inaccuracy ranged from 4 to 8mm Hg in 70% and 51% of the devices, respectively. The problems found in the cuffs - bladders, bulbs, pumps, and valves of the private practice and hospital devices were bladder damage (34% vs. 21%, respectively), holes/leaks in the bulbs (22% vs. 4%, respectively), and rubber aging (15% vs. 12%, respectively). Of the devices tested, 72% revealed at least one problem interfering with blood pressure measurement accuracy. CONCLUSION: Most of the manometers evaluated, whether used in private practice or in hospitals, were found to be inaccurate and unreliable, and their use may jeopardize the diagnosis and treatment of arterial hypertension.
Resumo:
The use of chemicals and chemical derivatives in agriculture and industry has contributed to their accumulation and persistence in the environment. Persistent organic pollutants (POPs) are among the environmental pollutants of most concern since, when improperly handled and disposed, they can persist in the environment, bioaccumulate through the food web, and may create serious public health and environmental problems. Development of an effective degradation process has become an area of intense research. The physical/chemical methods employed, such as volatilization, evaporation, photooxidation, adsorption, or hydrolysis, are not always effective, are very expensive, and, sometimes, lead to generation/disposal of other contaminants. Biodegradation is one of the major mechanisms by which organic contaminants are transformed, immobilized, or mineralized in the environment. A clear understanding of the major processes that affect the interactions between organic contaminants, microorganisms, and environmental matrix is, thus, important for determining persistence of the compounds, for predicting in situ transformation rates, and for developing site remediation. Information on their risks and impact and occurrence in the different environmental matrices is also important, in order to attenuate their impact and apply the appropriate remediation process. This chapter provides information on the fate of pesticides and polycyclic aromatic hydrocarbons (PAHs), their impact, bioavailability, and biodegradation. © Springer Science+Business Media Dordrecht 2014.
Resumo:
OBJECTIVE: To determine technical procedures and criteria used by Brazilian physicians for measuring blood pressure and diagnosing hypertension. METHODS: A questionnaire with 5 questions about practices and behaviors regarding blood pressure measurement and the diagnosis of hypertension was sent to 25,606 physicians in all Brazilian regions through a mailing list. The responses were compared with the recommendations of a specific consensus and descriptive analysis. RESULTS: Of the 3,621 (14.1%) responses obtained, 57% were from the southeastern region of Brazil. The following items were reported: use of an aneroid device by 67.8%; use of a mercury column device by 14.6%; 11.9% of the participants never calibrated the devices; 35.7% calibrated the devices at intervals < 1 year; 85.8% measured blood pressure in 100% of the medical visits; 86.9% measured blood pressure more than once and on more than one occasion. For hypertension diagnosis, 55.7% considered the patient's age, and only 1/3 relied on consensus statements. CONCLUSION: Despite the adequate frequency of both practices, it was far from that expected, and some contradictions between the diagnostic criterion for hypertension and the number of blood pressure measurements were found. The results suggest that, to include the great majority of the medical professionals, disclosure of consensus statements and techniques for blood pressure measurement should go beyond the boundaries of medical events and specialized journals.
Resumo:
OBJECTIVE: To assess the Dixtal DX2710 automated oscillometric device used for blood pressure measurement according to the protocols of the BHS and the AAMI. METHODS: Three blood pressure measurements were taken in 94 patients (53 females 15 to 80 years). The measurements were taken randomly by 2 observers trained to measure blood pressure with a mercury column device connected with an automated device. The device was classified according to the protocols of the BHS and AAMI. RESULT: The mean of blood pressure levels obtained by the observers was 148±38/93±25 mmHg and that obtained with the device was 148±37/89±26 mmHg. Considering the differences between the measurements obtained by the observer and those obtained with the automated device according to the criteria of the BHS, the following classification was adopted: "A" for systolic pressure (69% of the differences < 5; 90% < 10; and 97% < 15 mmHg); and "B" for diastolic pressure (63% of the differences < 5; 83% < 10; and 93% < 15 mmHg). The mean and standard deviation of the differences were 0±6.27 mmHg for systolic pressure and 3.82±6.21 mmHg for diastolic pressure. CONCLUSION: The Dixtal DX2710 device was approved according to the international recommendations.
Resumo:
La contaminación ambiental por metales pesados como el cromo y por compuestos orgánicos como los fenoles es un grave problema a nivel mundial debido a su toxicidad y a sus efectos adversos sobre los seres humanos, la flora y la fauna, tanto por su acumulación en la cadena alimentaria como por su continua persistencia en el medio ambiente. En un estudio preliminar, efectuado por nuestro laboratorio, se han detectado elevados niveles de estos contaminantes en sedimentos y efluentes en zonas industriales del sur de la provincia de Córdoba, lo cual plantea la necesidad de removerlos. Entre las tecnologías disponibles, la biorremediación, que se basa en el uso de sistemas biológicos, como los microorganismos, para la detoxificación y la degradación de contaminantes, se presenta como una alternativa probablemente más efectiva y de menor costo que las técnicas convencionales. Sin embargo, la aplicación de esta tecnología depende en gran parte de la influencia de las características particulares y específicas de la zona a remediar. En consecuencia, en primer lugar se caracterizará la zona de muestreo y se aislarán e identificarán microorganismos nativos de la región, tolerantes a cromo y fenol, a partir de muestras de suelo, agua y sedimentos, ya que podrían constituir una adecuada herramienta biotecnológica, mejor adaptada al sitio a tratar. Posteriormente se estudiará la biorremediación de Cr y fenol utilizando dichos microorganismos, analizando su capacidad para biotransformar, bioacumular o bioadsorber a estos contaminantes, y se determinarán las condiciones óptimas para el tratamiento. Se analizarán los posibles mecanismos fisiológicos, bioquímicos y moleculares involucrados en la remediación, que constituye una etapa crucial para el diseño de una estrategia adecuada y eficiente. Finalmente, se aplicará esta tecnología a escala reactor, como una primera aproximación al tratamiento a mayor escala. De esta manera se espera reducir los niveles de estos contaminantes y así minimizar el impacto ambiental que ellos producen en suelos y acuíferos. A futuro, la utilización de los microorganismos seleccionados, de manera individual o formando consorcios, para el tratamiento de efluentes industriales previa liberación al medio ambiente, o su uso en bioaumento, constituirían posibles alternativas de aplicación. Los principales impactos científico-tecnológicos del proyecto serán: (a) la generación de una nueva tecnología biológica de decontaminación de cromo y fenol, intentando presentar soluciones frente a una problemática ambiental que afecta a nuestra región, pero que además es común a la mayoría de los países, (b) la formación de nuevos recursos humanos en el área y (c) el trabajo en colaboración con otros grupos de investigación que se destacan en el área de biotecnología ambiental. Environmental pollution produced by heavy metals, such as chromium and organic compounds like phenolics is a serious global problem due to their toxicity, their adverse effects on human life, plants and animals, their accumulation in the food chains and also by their persistance in the environment. In a previous study performed in our laboratory, high levels of these pollutants were detected in sediments and effluents from industrial zones of the south of Cordoba Province, which determine the need to remove them. Among various technologies, bioremediation which is based on the use of biological systems, such as microorganisms, to detoxify and to degrade contaminants, is probably the most effective alternative, and it is less expensive than other conventional technologies. However, the application of this technology depends on the influence of the particular and specific characteristics of the zone to be remediate. As a consecuence, at the first time, the zone of sampling will be characterized and then, native microorganisms, tolerant to chromium and phenol, will be isolated from soils, water and sediments and identificated. These microorganisms would be an adequate biotechnological tool, more adapted to the conditions of the site to be remediate than other ones. Then, the ability of these selected microorganisms to biotransform, bioaccumulate or biosorbe chromium and phenol will be studied and the optimal conditions for the treatment will be determined. The possible physiological, biochemical and molecular mechanisms involved in bioremediation will be also analized, because this is a crucial step in the design of an adequate and efficient remediation strategy. Finally, this technology will be applied in a reactor, as an approximation to the treatment at a major scale. A reduction in the levels of these pollutants will be expected, to minimize their environmental impact on soils and aquifers.