954 resultados para machine tool


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, knowledge-based approach using Support Vector Machines (SVMs) are used for estimating the coordinated zonal settings of a distance relay. The approach depends on the detailed simulation studies of apparent impedance loci as seen by distance relay during disturbance, considering various operating conditions including fault resistance. In a distance relay, the impedance loci given at the relay location is obtained from extensive transient stability studies. SVMs are used as a pattern classifier for obtaining distance relay co-ordination. The scheme utilizes the apparent impedance values observed during a fault as inputs. An improved performance with the use of SVMs, keeping the reach when faced with different fault conditions as well as system power flow changes, are illustrated with an equivalent 265 bus system of a practical Indian Western Grid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The report talks about the implementation of Vehicle Detection tool using opensource software - WxPython. The main functionality of this tool includes collection of data, plotting of magnetometer data and the count of the vehicles detected. The report list about how installation process and various functionality of the tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we address a scheduling problem for minimizing total weighted flowtime, observed in automobile gear manufacturing. Specifically, the bottleneck operation of the pre-heat treatment stage of gear manufacturing process has been dealt with in scheduling. Many real-life scenarios like unequal release times, sequence dependent setup times, and machine eligibility restrictions have been considered. A mathematical model taking into account dynamic starting conditions has been proposed. The problem is derived to be NP-hard. To approach the problem, a few heuristic algorithms have been proposed. Based on planned computational experiments, the performance of the proposed heuristic algorithms is evaluated: (a) in comparison with optimal solution for small-size problem instances and (b) in comparison with the estimated optimal solution for large-size problem instances. Extensive computational analyses reveal that the proposed heuristic algorithms are capable of consistently yielding near-statistically estimated optimal solutions in a reasonable computational time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead-lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not available in most of the power plants. Full state feedback controllers require feedback of other machine states in a multi-machine power system and necessitate block diagonal structure constraints for decentralized implementation. This paper investigates the design of Linear Quadratic Power System Stabilizers using a recently proposed modified Heffron-Phillip's model. This model is derived by taking the secondary bus voltage of the step-up transformer as reference instead of the infinite bus. The state variables of this model can be obtained by local measurements. This model allows a coordinated linear quadratic control design in multi machine systems. The performance of the proposed controller has been evaluated on two widely used multi-machine power systems, 4 generator 10 bus and 10 generator 39 bus systems. It has been observed that the performance of the proposed controller is superior to that of the conventional Power System Stabilizers (PSS) over a wide range of operating and system conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural Support Vector Machines (SSVMs) have become a popular tool in machine learning for predicting structured objects like parse trees, Part-of-Speech (POS) label sequences and image segments. Various efficient algorithmic techniques have been proposed for training SSVMs for large datasets. The typical SSVM formulation contains a regularizer term and a composite loss term. The loss term is usually composed of the Linear Maximum Error (LME) associated with the training examples. Other alternatives for the loss term are yet to be explored for SSVMs. We formulate a new SSVM with Linear Summed Error (LSE) loss term and propose efficient algorithms to train the new SSVM formulation using primal cutting-plane method and sequential dual coordinate descent method. Numerical experiments on benchmark datasets demonstrate that the sequential dual coordinate descent method is faster than the cutting-plane method and reaches the steady-state generalization performance faster. It is thus a useful alternative for training SSVMs when linear summed error is used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present a statistical approach inspired by stylometry -measurement of author style- to study the characteristics of machine translators. Our approach quantifies the style of a translator in terms of the properties derived from the distribution of stopwords in its output - a standard approach in modern stylometry. Our study enables us to match translated text to the source machine translator that generated them. Also, the stylometric closeness of human generated text to that generated by machine translators provides handles to assess the quality of machine translators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper illustrates the application of a new technique, based on Support Vector Clustering (SVC) for the direct identification of coherent synchronous generators in a large interconnected Multi-Machine Power Systems. The clustering is based on coherency measures, obtained from the time domain responses of the generators following system disturbances. The proposed clustering algorithm could be integrated into a wide-area measurement system that enables fast identification of coherent clusters of generators for the construction of dynamic equivalent models. An application of the proposed method is demonstrated on a practical 15 generators 72-bus system, an equivalent of Indian Southern grid in an attempt to show the effectiveness of this clustering approach. The effects of short circuit fault locations on coherency are also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the influence of tool rotation speed and feed rate on the forming limit of friction stir welded Al 6061-T651 sheets has been investigated. The forming limit curve was evaluated by limit dome height test performed on all the friction stir welded sheets. The welding trials were conducted at a tool rotation speed of 1300 and 1400 r/min and feed rate of 90 and 100 mm/min. A third trial of welding was performed at a rotational speed of 1500 r/min and feed rate 120 mm/min. It is found that with increase in the tool rotation speed, from 1300 to 1400 r/min, for a constant feed rate, the forming limit of friction stir welded blank has improved and with increase in feed rate, from 90 to 100 mm/min, for a constant tool rotation speed, it has decreased. The forming limit of friction stir welded sheets is better than unwelded sheets. The thickness gradient after forming is severe in the cases of friction stir welded blanks made at higher feed rate and lower rotation speed. The strain hardening exponent of weld (n) increases with increase in tool rotation speed and it decreases with increase in feed rate. It has been demonstrated that the change in the forming limit of friction stir welded sheets with respect to welding parameters is due to the thickness distribution severity and strain hardening exponent of the weld region during forming. There is not much variation in the dome height among the friction stir welded sheets tested. When compared with unwelded sheets, dome height of friction stir welded sheets is higher in near-plane-strain condition, but it is lesser in stretching strain paths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sliding history in friction-induced material transfer of dry 2H-MoS2 particles in a sheared contact was studied. Video images in contact showed fragmentation of lubricant particles and build-up of a transfer film, and were used to measure the speed of fragmented particles in the contact region. Total internal reflection (TIR) Raman spectroscopy was used to follow the build-up of the MoS2 transfer film. A combination of in situ and ex situ analysis of the mating bodies revealed the thickness of the transfer film at steady state to be of the order of 35 nm on the ball surface and 15 nm on the flat substrate. Insights into the mechanism of formation of the transfer film in the early stages of sliding contact are deduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a fast and accurate relaying technique for a long 765kv UHV transmission line based on support vector machine. For a long EHV/UHV transmission line with large distributed capacitance, a traditional distance relay which uses a lumped parameter model of the transmission line can cause malfunction of the relay. With a frequency of 1kHz, 1/4th cycle of instantaneous values of currents and voltages of all phases at the relying end are fed to Support Vector Machine(SVM). The SVM detects fault type accurately using 3 milliseconds of post-fault data and reduces the fault clearing time which improves the system stability and power transfer capability. The performance of relaying scheme has been checked with a typical 765kV Indian transmission System which is simulated using the Electromagnetic Transients Program(EMTP) developed by authors in which the distributed parameter line model is used. More than 15,000 different short circuit fault cases are simulated by varying fault location, fault impedance, fault incidence angle and fault type to train the SVM for high speed accurate relaying. Simulation studies have shown that the proposed relay provides fast and accurate protection irrespective of fault location, fault impedance, incidence time of fault and fault type. And also the proposed scheme can be used as augmentation for the existing relaying, particularly for Zone-2, Zone-3 protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-negative matrix factorization [5](NMF) is a well known tool for unsupervised machine learning. It can be viewed as a generalization of the K-means clustering, Expectation Maximization based clustering and aspect modeling by Probabilistic Latent Semantic Analysis (PLSA). Specifically PLSA is related to NMF with KL-divergence objective function. Further it is shown that K-means clustering is a special case of NMF with matrix L2 norm based error function. In this paper our objective is to analyze the relation between K-means clustering and PLSA by examining the KL-divergence function and matrix L2 norm based error function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the existing literature on the application of X-ray photoelectron spectroscopy in the study of nanocrystals. The unique ability of this technique to provide quantitative and reliable descriptions of highly complex internal structures of a variety of nanocrystals has been discussed in detail. We show that an accurate description of the nanocrystal internal structure is crucial and a prerequisite to understand many different properties, particularly optical properties, of such nanocrystal systems. We also discuss limitations and future outlook of this technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Lovasz θ function of a graph, is a fundamental tool in combinatorial optimization and approximation algorithms. Computing θ involves solving a SDP and is extremely expensive even for moderately sized graphs. In this paper we establish that the Lovasz θ function is equivalent to a kernel learning problem related to one class SVM. This interesting connection opens up many opportunities bridging graph theoretic algorithms and machine learning. We show that there exist graphs, which we call SVM−θ graphs, on which the Lovasz θ function can be approximated well by a one-class SVM. This leads to a novel use of SVM techniques to solve algorithmic problems in large graphs e.g. identifying a planted clique of size Θ(n√) in a random graph G(n,12). A classic approach for this problem involves computing the θ function, however it is not scalable due to SDP computation. We show that the random graph with a planted clique is an example of SVM−θ graph, and as a consequence a SVM based approach easily identifies the clique in large graphs and is competitive with the state-of-the-art. Further, we introduce the notion of a ''common orthogonal labeling'' which extends the notion of a ''orthogonal labelling of a single graph (used in defining the θ function) to multiple graphs. The problem of finding the optimal common orthogonal labelling is cast as a Multiple Kernel Learning problem and is used to identify a large common dense region in multiple graphs. The proposed algorithm achieves an order of magnitude scalability compared to the state of the art.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Realization of cloud computing has been possible due to availability of virtualization technologies on commodity platforms. Measuring resource usage on the virtualized servers is difficult because of the fact that the performance counters used for resource accounting are not virtualized. Hence, many of the prevalent virtualization technologies like Xen, VMware, KVM etc., use host specific CPU usage monitoring, which is coarse grained. In this paper, we present a performance monitoring tool for KVM based virtualized machines, which measures the CPU overhead incurred by the hypervisor on behalf of the virtual machine along-with the CPU usage of virtual machine itself. This fine-grained resource usage information, provided by the above tool, can be used for diverse situations like resource provisioning to support performance associated QoS requirements, identification of bottlenecks during VM placements, resource profiling of applications in cloud environments, etc. We demonstrate a use case of this tool by measuring the performance of web-servers hosted on a KVM based virtualized server.