876 resultados para laser interferometry-based guidance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report passive mode-locking of an Er-doped fiber laser using carbon nanotubes deposited on the facet of a right-angle optical waveguide. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photonic crystals are materials that are used to control or manipulate the propagation of light through a medium for a desired application. Common fabrication methods to prepare photonic crystals are both costly and intricate. However, through a cost-effective laser-induced photochemical patterning, one-dimensional responsive and tuneable photonic crystals can easily be fabricated. These structures act as optical transducers and respond to external stimuli. These photonic crystals are generally made of a responsive hydrogel that can host metallic nanoparticles in the form of arrays. The hydrogel-based photonic crystal has the capability to alter its periodicity in situ but also recover its initial geometrical dimensions, thereby rendering it fully reversible and reusable. Such responsive photonic crystals have applications in various responsive and tuneable optical devices. In this study, we fabricated a pH-sensitive photonic crystal sensor through photochemical patterning and demonstrated computational simulations of the sensor through a finite element modelling technique in order to analyse its optical properties on varying the pattern and characteristics of the nanoparticle arrays within the responsive hydrogel matrix. Both simulations and experimental results show the wavelength tuneability of the sensor with good agreement. Various factors, including nanoparticle size and distribution within the hydrogel-based responsive matrices that directly affect the performance of the sensors, are also studied computationally. © 2014 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tuneable optical sensors have been developed to sense chemical stimuli for a range of applications from bioprocess and environmental monitoring to medical diagnostics. Here, we present a porphyrin-functionalised optical sensor based on a holographic grating. The holographic sensor fulfils two key sensing functions simultaneously: it responds to external stimuli and serves as an optical transducer in the visible region of the spectrum. The sensor was fabricated via a 6 nanosecond-pulsed laser (350 mJ, λ = 532 nm) photochemical patterning process that enabled a facile fabrication. A novel porphyrin derivative was synthesised to function as the crosslinker of a polymer matrix, the light-absorbing material, the component of a diffraction grating, as well as the cation chelating agent in the sensor. The use of this multifunctional porphyrin permitted two-step fabrication of a narrow-band light diffracting photonic sensing structure. The resulting structure can be tuned finely to diffract narrow-band light based on the changes in the fringe spacing within the polymer and the system's overall index of refraction. We show the utility of the sensor by demonstrating its reversible colorimetric tuneability in response to variation in concentrations of organic solvents and metal cations (Cu 2+ and Fe2+) in the visible region of the spectrum (λmax ≈ 520-680 nm) with a response time within 50 s. Porphyrin-functionalised optical sensors offer great promise in fields varying from environmental monitoring to biochemical sensing to printable optical devices. This journal is © the Partner Organisations 2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-wall carbon nanotubes (SWNTs) and graphene have emerged as promising saturable absorbers (SAs), due to their broad operation bandwidth and fast recovery times [1-3]. However, Yb-doped fiber lasers mode-locked using CNT and graphene SAs have generated relatively long pulses. All-fiber cavity designs are highly favored for their environmental robustness. Here, we demonstrate an all-fiber Yb-doped laser based on a SWNT saturable absorber, which allows generation of 8.7 ps-long pulses, externally compressed to 118 fs. To the best of our knowledge, these are the shortest pulses obtained with SWNT SAs from a Yb-doped fiber laser. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-fundamental-mode photonic crystal (PhC) vertical cavity surface emitting lasers (VCSEL) are produced and their single-fundamental-mode performances are investigated and demonstrated. A two-dimensional PhC with single-point-defect structure is fabricated using UV photolithography and inductive coupled plasma reactive ion etching on the surface of the VCSEL's top distributed Bragg-reflector. The PhC VCSEL maintains single-fundamental-mode operating with output power 1.7 mW and threshold current 2.5 mA. The full width half maximum of the lasing spectrum is less than 0.1 nm, the far field divergence angle is less than 10 degrees and the side mode suppression ratio is over 35 dB. The device characteristics are analyzed based on the effective index model of the photonic crystal fiber. The experimental results agree well with the theoretical expectation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have fabricated and characterized GaN-based vertical cavity surface emitting lasers (VCSELs) with a unique active region structure, in which three sets of InGaN asymmetric coupled quantum wells are placed in a half-wavelength (0.5 lambda) length. Lasing action was achieved under optical pumping at room temperature with a threshold pumping energy density of about 6.5 mJ/cm(2). The laser emitted a blue light at 449.5 nm with a narrow linewidth below 0.1 nm and had a high spontaneous emission factor of about 3.0x10(-2). The results indicate that this active region structure is useful in reducing the process difficulties and improving the threshold characteristics of GaN-based VCSELs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A distributed feedback laser with the sampled grating has been designed and fabricated. The typical threshold current of the sampled grating based DFB laser is 32 mA, and the output power is about 10mW at the injected current of 100 mA. The lasing wavelength is 1.5564 mu m, which is the -1(st) order mode of the sampled grating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GaN films grown on sapphire substrate with an emphasis on epitaxial lateral overgrown (ELOG) layers with an array of rhombic shaped mask area as well as InGaN/GaN MQW laser diode layer structures were investigated by cathodoluminescence (CL) spectroscopy and CL imaging at room and low temperatures. The microscopic imaging with a high-spatial resolution clearly reveals the distribution of threading dislocations and point defects in ELOG GaN films. The secondary electron and CL data measured on cleaved faces of laser diodes are analyzed in consideration with luminescence mechanisms in semiconductor heterostructures and around the p - n junction, providing important information on the defects and carrier dynamics in laser diode devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we obtain SiGe quantum dots with the diameters and density of 15-20 nm and 1.8 x 10(11) cm(-2), respectively, by 193 nm excimer laser annealing of Si0.77Ge0.23 strained films. Under the excimer laser annealing, only surface atoms diffusion happens. From the detailed statistical information about the size and shape of the quantum dots with different annealing time, it is shown that the as-grown self-assembled quantum dots, especially the {105}-faceted dots, are not stable and disappear before the appearance of the laser-induced quantum dots. Based on the calculation of surface energy and surface chemical potential, we show that the {103}-faceted as-grown self-assembled quantum dots are more heavily strained than the {105}-faceted ones, and the heavy strain in the dot can decrease the surface energy of the dot facets. The formation of the laser-induced quantum dots, which is also with heavy strain, is attributed to kinetic constraint. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new device of two parallel distributed feedback ( DFB) laser integrated monolithically with Y-branch waveguide coupler was fabricated by means of quantum well intermixing. Optical microwave signal was generated in the Y-branch waveguide coupler through frequency beating of the two laser modes coming from two DFB lasers in parallel, which had a small difference in frequency. Continuous rapidly tunable optical microwave signals from 13 GHz to 42 GHz were realized by adjusting independently the driving currents injected into the two DFB lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An optical modulator is designed and fabricated based on a Si0.75Ge0.25/Si/Si0.5Ge0.5 asymmetrical superlattice structure. The device comprises a p-i-n diode made on the asymmetrical superlattice integrated with a 920-mu m-long Fabry-Perot (F-P) cavity. Parameters of the rib waveguide are designed to satisfy only the fundamental-TE mode transmission. Here, 65 and 40-pm red shifts of the peak resonant were measured under the applied bias of 2.5 and -32.0 V, respectively. The analysis shows that, besides the thermal-optical and plasma dispersion effects, the Pockels effect also contributes to such a peak shift. The corresponding calculated effective Pockels coefficient is about 0.158 pm/V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Si-based photonic materials and devices, including SiGe/Si quantum structures, SOI and InGaAs bonded on Si, PL of Si nanocrystals, SOI photonic crystal filter, Si based RCE (Resonant Cavity Enhanced) photodiodes, SOI TO (thermai-optical) switch matrix were investigated in Institute of Serniconductors, Chinese Academy of Sciences. The main results in recent years are presented in the paper. The mechanism of PL from Si NCs embedded in SiO2 matrix was studied, a greater contribution of the interface state recombination (PL peak in 850 similar to 900 nm) is associated with larger Si NCs and higher interface state density. Ge dots with density of order of 10(11) cm(-2) were obtained by UHV/CVD growth and 193 nm excimer laser annealing. SOI photonic crystal filter with resonant wavelength of 1598 nm and Q factor of 1140 was designed and made. Si based hybrid InGaAs RCE PD with eta of 34.4% and FWHM of 27 nut were achieved by MOCVD growth and bonding technology between InGaAs epitaxial and Si wafers. A 16x16 SOI optical switch matrix were designed and made. A new current driving circuit was used to improve the response speed of a 4x4 SOI rearrangeable nonblocking TO switch matrix, rising and failing time is 970 and 750 ns, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theoretical calculations of the mode characteristics of an equilateral-triangle resonator (ETR) with a 10 mu m cavity side length show that the fundamental mode, with longitudinal mode index of 25, has a wavelength of 2.185 mu m and a longitudinal mode separation of 100 nm. This mode has a quality factor (similar to 2x10(5)) that is much larger than the first (similar to 5x10(4)) and second (similar to 3x10(4)) order modes, indicating that single fundamental mode lasing should be accessible over a broad wavelength tuning range. An electrically injected ETR based on this design is fabricated from an InGaAsSb/AlGaAsSb/GaSb, graded-index separate-confinement heterostructure, laser diode wafer with a 2.1 mu m emission wavelength. This device achieved single mode, continuous wave operation at 77 K with a threshold current of 0.5 mA and a single mode wavelength tuning range of 3.25 nm, which is accomplished by varying the injection current from 0.5 to 6.0 mA. (C) 2008 American Vacuum Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method for characterizing the parasitics of parasitic network is proposed based on the relations between the scattering parameters of a semiconductor laser chip and laser diode. Experiments are designed and performed using our method. The analysis results are in good agreement with the measurements. Furthermore, how the parasitics change with the parasitic element values are investigated. The method only needs reflection coefficient of laser diode to be measured, which is simple because of the developed electrical-domain measurement techniques. 2007 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate the 1.58 mu m emission at room temperature from a metamorphic In0.6Ga0.4As quantum well laser grown on GaAs by molecular beam epitaxy. The large lattice mismatch was accommodated through growth of a linearly graded buffer layer to create a high quality virtual In0.32Ga0.68As substrate. Careful growth optimization ensured good optical and structural qualities. For a 1250x50 mu m(2) broad area laser, a minimum threshold current density of 490 A/cm(2) was achieved under pulsed operation. This result indicates that metamorphic InGaAs quantum wells can be an alternative approach for 1.55 mu m GaAs-based lasers. (C) 2007 American Institute of Physics.