945 resultados para joint hypothesis tests


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the advances in technology, seismological theory, and data acquisition, a number of high-resolution seismic tomography models have been published. However, discrepancies between tomography models often arise from different theoretical treatments of seismic wave propagation, different inversion strategies, and different data sets. Using a fixed velocity-to-density scaling and a fixed radial viscosity profile, we compute global mantle flow models associated with the different tomography models and test the impact of these for explaining surface geophysical observations (geoid, dynamic topography, stress, and strain rates). We use the joint modeling of lithosphere and mantle dynamics approach of Ghosh and Holt (2012) to compute the full lithosphere stresses, except that we use HC for the mantle circulation model, which accounts for the primary flow-coupling features associated with density-driven mantle flow. Our results show that the seismic tomography models of S40RTS and SAW642AN provide a better match with surface observables on a global scale than other models tested. Both of these tomography models have important similarities, including upwellings located in Pacific, Eastern Africa, Iceland, and mid-ocean ridges in the Atlantic and Indian Ocean and downwelling flows mainly located beneath the Andes, the Middle East, and central and Southeast Asia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present up-to-date electroweak fits of various Randall-Sundrum (RS) models. We consider the bulk RS, deformed RS, and the custodial RS models. For the bulk RS case we find the lightest Kaluza-Klein (KK) mode of the gauge boson to be similar to 8 TeV, while for the custodial case it is similar to 3 TeV. The deformed model is the least fine-tuned of all which can give a good fit for KK masses < 2 TeV depending on the choice of the model parameters. We also comment on the fine-tuning in each case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of thermal-mechanical loading on a surface mount assembly with interface cracks between the solder and the resistor and between the solder and the printed circuit board (PCB) was studied using a non-linear thermal finite element analysis. The thermal effect was taken as cooling from the solder eutectic temperature to room temperature. Mechanical loading at the ends of the PCB was also applied. The results showed that cooling had the effect of causing large residual shear displacement at the region near the interface cracks. The mechanical loading caused additional crack opening displacements. The analysis on the values of J-integral for the interface cracks showed that J-integral was approximately path independent, and that the effect of crack at the solder/PCB interface is much more serious than that between the component and solder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the stability of jointed rock slopes by using our improved three-dimensional discrete element methods (DEM) and physical modeling. Results show that the DEM can simulate all failure modes of rock slopes with different joint configurations. The stress in each rock block is not homogeneous and blocks rotate in failure development. Failure modes depend on the configuration of joints. Toppling failure is observed for the slope with straight joints and sliding failure is observed for the slope with staged joints. The DEM results are also compared with those of limit equilibrium method (LEM). Without considering the joints in rock masses, the LEM predicts much higher factor of safety than physical modeling and DEM. The failure mode and factor of safety predicted by the DEM are in good agreement with laboratory tests for any jointed rock slope.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ compressive tests on specially designed small samples made from brittle metallic foams were accomplished in a loading device equipped in the scanning electron microscopy (SEM). Each of the small samples comprises only several cells in the effective test zone (ETZ), with one major cell in the middle. In such a system one can not only obtain sequential collapse-process images of a single cell and its cell walls with high resolution, but also correlate the detailed failure behaviour of the cell walls with the stress-strain response, therefore reveal the mechanisms of energy absorption in the mesoscopic scale. Meanwhile, the stress-strain behaviour is quite different from that of bulk foams in dimensions of enough large, indicating a strong size effect. According to the in situ observations, four failure modes in the cell-wall level were summarized, and these modes account for the mesoscopic mechanisms of energy absorption. Paralleled compression tests on bulk samples were also carried out, and it is found that both fracturing of a single cell and developing of fracture bands are defect-directed or weakness-directed processes. The mechanical properties of the brittle aluminum foams obtained from the present tests agree well with the size effect model for ductile cellular solids proposed by Onck et al. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro anchor is a kind of typical structures in micro/nano electromechanical systems (MEMS/NEMS), and it can be made by anodic bonding process, with thin films of metal or alloy as an intermediate layer. At the relative low temperature and voltage, specimens with actually sized micro anchor structures were anodically bonded using Pyrex 7740 glass and patterned crystalline silicon chips coated with aluminum thin film with a thickness comprised between 50 nm and 230 nm. To evaluate the bonding quality, tensile pulling tests have been finished with newly designed flexible fixtures for these specimens. The experimental results exhibit that the bonding tensile strength increases with the bonding temperature and voltage, but it decreases with the increase of the thickness of Al intermediate layer. This kind of thickness effect of the intermediate layer was not mentioned in the literature on anodic bonding. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regular zinc oxide (ZnO) tetrapods with a flat plane have been obtained on Si(1 0 0) substrate via the chemical vapour deposition approach. The x-ray diffraction result suggests that these tetrapods are all single crystals with a wurtzite structure that grow along the (0 0 0 1) direction and corresponding electron backscatter diffraction analysis reveals the crystal orientation of growth and exposed surface. Furthermore, we find some ZnO tetrapods with some legs off and the angles between every two legs are measured with the aid of scanning electron microscopy and image analysis, which benefit to reveal the structure of ZnO tetrapods joint. The structure model and growth mechanism of ZnO tetrapods are proposed. Besides, the stable model of the interface was obtained through the density-functional theory calculation and the energy needed to break the twin plane junction was calculated as 5.651 J m(-2).