912 resultados para incremental computation
Resumo:
Knowing the size of the terms to which program variables are bound at run-time in logic programs is required in a class of optimizations which includes granularity control and recursion elimination. Such size is difficult to even approximate at compile time and is thus generally computed at run-time by using (possibly predeñned) predicates which traverse the terms involved. We propose a technique which has the potential of performing this computation much more efficiently. The technique is based on ñnding program procedures which are called before those in which knowledge regarding term sizes is needed and which traverse the terms whose size is to be determined, and transforming such procedures so that they compute term sizes "on the fly". We present a systematic way of determining whether a given program can be transformed in order to compute a given term size at a given program point without additional term traversal. Also, if several such transformations are possible our approach allows ñnding minimal transformations under certain criteria. We also discuss the advantages and applications of our technique (specifically in the task of granularity control) and present some performance results.
Resumo:
Knowing the size of the terms to which program variables are bound at run-time in logic programs is required in a class of applications related to program optimization such as, for example, recursion elimination and granularity analysis. Such size is difficult to even approximate at compile time and is thus generally computed at run-time by using (possibly predefined) predicates which traverse the terms involved. We propose a technique based on program transformation which has the potential of performing this computation much more efficiently. The technique is based on finding program procedures which are called before those in which knowledge regarding term sizes is needed and which traverse the terms whose size is to be determined, and transforming such procedures so that they compute term sizes "on the fly". We present a systematic way of determining whether a given program can be transformed in order to compute a given term size at a given program point without additional term traversal. Also, if several such transformations are possible our approach allows finding minimal transformations under certain criteria. We also discuss the advantages and present some applications of our technique.
Resumo:
En esta tesis se integran numéricamente las ecuaciones reducidas de Navier Stokes (RNS), que describen el flujo en una capa límite tridimensional que presenta también una escala característica espacial corta en el sentido transversal. La formulación RNS se usa para el cálculo de “streaks” no lineales de amplitud finita, y los resultados conseguidos coinciden con los existentes en la literatura, obtenidos típicamente utilizando simulación numérica directa (DNS) o nonlinear parabolized stability equations (PSE). El cálculo de los “streaks” integrando las RNS es mucho menos costoso que usando DNS, y no presenta los problemas de estabilidad que aparecen en la formulación PSE cuando la amplitud del “streak” deja de ser pequeña. El código de integración RNS se utiliza también para el cálculo de los “streaks” que aparecen de manera natural en el borde de ataque de una placa plana en ausencia de perturbaciones en la corriente uniforme exterior. Los resultados existentes hasta ahora calculaban estos “streaks” únicamente en el límite lineal (amplitud pequeña), y en esta tesis se lleva a cabo el cálculo de los mismos en el régimen completamente no lineal (amplitud finita). En la segunda parte de la tesis se generaliza el código RNS para incluir la posibilidad de tener una placa no plana, con curvatura en el sentido transversal que varía lentamente en el sentido de la corriente. Esto se consigue aplicando un cambio de coordenadas, que transforma el dominio físico en uno rectangular. La formulación RNS se integra también expresada en las correspondientes coordenadas curvilíneas. Este código generalizado RNS se utiliza finalmente para estudiar el flujo de capa límite sobre una placa con surcos que varían lentamente en el sentido de la corriente, y es usado para simular el flujo sobre surcos que crecen en tal sentido. Abstract In this thesis, the reduced Navier Stokes (RNS) equations are numerically integrated. This formulation describes the flow in a three-dimensional boundary layer that also presents a short characteristic space scale in the spanwise direction. RNS equations are used to calculate nonlinear finite amplitude “streaks”, and the results agree with those reported in the literature, typically obtained using direct numerical simulation (DNS) or nonlinear parabolized stability equations (PSE). “Streaks” simulations through the RNS integration are much cheaper than using DNS, and avoid stability problems that appear in the PSE when the amplitude of the “streak” is not small. The RNS integration code is also used to calculate the “streaks” that naturally emerge at the leading edge of a flat plate boundary layer in the absence of any free stream perturbations. Up to now, the existing results for these “streaks” have been only calculated in the linear limit (small amplitude), and in this thesis their calculation is carried out in the fully nonlinear regime (finite amplitude). In the second part of the thesis, the RNS code is generalized to include the possibility of having a non-flat plate, curved in the spanwise direction and slowly varying in the streamwise direction. This is achieved by applying a change of coordinates, which transforms the physical domain into a rectangular one. The RNS formulation expressed in the corresponding curvilinear coordinates is also numerically integrated. This generalized RNS code is finally used to study the boundary layer flow over a plate with grooves which vary slowly in the streamwise direction; and this code is used to simulate the flow over grooves that grow in the streamwise direction.
Resumo:
Abstract interpretation has been widely used for the analysis of object-oriented languages and, more precisely, Java source and bytecode. However, while most of the existing work deals with the problem of finding expressive abstract domains that track accurately the characteristics of a particular concrete property, the underlying fixpoint algorithms have received comparatively less attention. In fact, many existing (abstract interpretation based) fixpoint algorithms rely on relatively inefficient techniques to solve inter-procedural call graphs or are specific and tied to particular analyses. We argue that the design of an efficient fixpoint algorithm is pivotal to support the analysis of large programs. In this paper we introduce a novel algorithm for analysis of Java bytecode which includes a number of optimizations in order to reduce the number of iterations. Also, the algorithm is parametric in the sense that it is independent of the abstract domain used and it can be applied to different domains as "plug-ins". It is also incremental in the sense that, if desired, analysis data can be saved so that only a reduced amount of reanalysis is needed after a small program change, which can be instrumental for large programs. The algorithm is also multivariant and flowsensitive. Finally, another interesting characteristic of the algorithm is that it is based on a program transformation, prior to the analysis, that results in a highly uniform representation of all the features in the language and therefore simplifies analysis. Detailed descriptions of decompilation solutions are provided and discussed with an example.
Resumo:
The paper resumes the results obtained applying various implementations of the direct boundary element method (BEM) to the solution of the Laplace Equation governing the potential flow problem during everyday service manoeuvres of high-speed trains. In particular the results of train passing events at three different speed combinations are presented. Some recommendations are given in order to reduce calculation times which as is demonstrated can be cut down to not exceed reasonable limits even when using nowadays office PCs. Thus the method is shown to be a very valuable tool for the design engineer.
Resumo:
Global analyzers traditionally read and analyze the entire program at once, in a non-incremental way. However, there are many situations which are not well suited to this simple model and which instead require reanalysis of certain parts of a program which has already been analyzed. In these cases, it appears inefficient to perform the analysis of the program again from scratch, as needs to be done with current systems. We describe how the fixpoint algorithms in current generic analysis engines can be extended to support incremental analysis. The possible changes to a program are classified into three types: addition, deletion, and arbitrary change. For each one of these, we provide one or more algorithms for identifying the parts of the analysis that must be recomputed and for performing the actual recomputation. The potential benefits and drawbacks of these algorithms are discussed. Finally, we present some experimental results obtained with an implementation of the algorithms in the PLAI generic abstract interpretation framework. The results show significant benefits when using the proposed incremental analysis algorithms.
Resumo:
Knowing the size of the terms to which program variables are bound at run-time in logic programs is required in a class of applications related to program optimization such as, for example, granularity analysis and selection among different algorithms or control rules whose performance may be dependent on such size. Such size is difficult to even approximate at compile time and is thus generally computed at run-time by using (possibly predefined) predicates which traverse the terms involved. We propose a technique based on program transformation which has the potential of performing this computation much more efficiently. The technique is based on finding program procedures which are called before those in which knowledge regarding term sizes is needed and which traverse the terms whose size is to be determined, and transforming such procedures so that they compute term sizes "on the fly". We present a systematic way of determining whether a given program can be transformed in order to compute a given term size at a given program point without additional term traversal. Also, if several such transformations are possible our approach allows finding minimal transformations under certain criteria. We also discuss the advantages and applications of our technique and present some performance results.
Resumo:
Knowing the size of the terms to which program variables are bound at run-time in logic programs is required in a class of applications related to program optimization such as, for example, recursion elimination and granularity analysis. Such size is difficult to even approximate at compile time and is thus generally computed at run-time by using (possibly predefined) predicates which traverse the terms involved. We propose a technique based on program transformation which has the potential of performing this computation much more efficiently. The technique is based on finding program procedures which are called before those in which knowledge regarding term sizes is needed and which traverse the terms whose size is to be determined, and transforming such procedures so that they compute term sizes "on the fly". We present a systematic way of determining whether a given program can be transformed in order to compute a given term size at a given program point without additional term traversal. Also, if several such transformations are possible our approach allows finding minimal transformations under certain criteria. We also discuss the advantages and present some applications of our technique.
Resumo:
Bruynooghe described a framework for the top-down abstract interpretation of logic programs. In this framework, abstract interpretation is carried out by constructing an abstract and-or tree in a top-down fashion for a given query and program. Such an abstract interpreter requires fixpoint computation for programs which contain recursive predicates. This paper presents in detail a fixpoint algorithm that has been developed for this purpose and the motivation behind it. We start off by describing a simple-minded algorithm. After pointing out its shortcomings, we present a series of refinements to this algorithm, until we reach the final version. The aim is to give an intuitive grasp and provide justification for the relative complexity of the final algorithm. We also present an informal proof of correctness of the algorithm and some results obtained from an implementation.
Resumo:
It is well known that the evaluation of the influence matrices in the boundary-element method requires the computation of singular integrals. Quadrature formulae exist which are especially tailored to the specific nature of the singularity, i.e. log(*- x0)9 Ijx- JC0), etc. Clearly the nodes and weights of these formulae vary with the location Xo of the singular point. A drawback of this approach is that a given problem usually includes different types of singularities, and therefore a general-purpose code would have to include many alternative formulae to cater for all possible cases. Recently, several authors1"3 have suggested a type independent alternative technique based on the combination of standard Gaussian rules with non-linear co-ordinate transformations. The transformation approach is particularly appealing in connection with the p.adaptive version, where the location of the collocation points varies at each step of the refinement process. The purpose of this paper is to analyse the technique in eference 3. We show that this technique is asymptotically correct as the number of Gauss points increases. However, the method possesses a 'hidden' source of error that is analysed and can easily be removed.
Resumo:
Thanks to their inherent properties, probabilistic graphical models are one of the prime candidates for machine learning and decision making tasks especially in uncertain domains. Their capabilities, like representation, inference and learning, if used effectively, can greatly help to build intelligent systems that are able to act accordingly in different problem domains. Evolutionary algorithms is one such discipline that has employed probabilistic graphical models to improve the search for optimal solutions in complex problems. This paper shows how probabilistic graphical models have been used in evolutionary algorithms to improve their performance in solving complex problems. Specifically, we give a survey of probabilistic model building-based evolutionary algorithms, called estimation of distribution algorithms, and compare different methods for probabilistic modeling in these algorithms.
Resumo:
We discuss several methods, based on coordinate transformations, for the evaluation of singular and quasisingular integrals in the direct Boundary Element Method. An intrinsec error of some of these methods is detected. Two new transformations are suggested which improve on those currently available.
Resumo:
In recent future, wireless sensor networks (WSNs) will experience a broad high-scale deployment (millions of nodes in the national area) with multiple information sources per node, and with very specific requirements for signal processing. In parallel, the broad range deployment of WSNs facilitates the definition and execution of ambitious studies, with a large input data set and high computational complexity. These computation resources, very often heterogeneous and driven on-demand, can only be satisfied by high-performance Data Centers (DCs). The high economical and environmental impact of the energy consumption in DCs requires aggressive energy optimization policies. These policies have been already detected but not successfully proposed. In this context, this paper shows the following on-going research lines and obtained results. In the field of WSNs: energy optimization in the processing nodes from different abstraction levels, including reconfigurable application specific architectures, efficient customization of the memory hierarchy, energy-aware management of the wireless interface, and design automation for signal processing applications. In the field of DCs: energy-optimal workload assignment policies in heterogeneous DCs, resource management policies with energy consciousness, and efficient cooling mechanisms that will cooperate in the minimization of the electricity bill of the DCs that process the data provided by the WSNs.
Resumo:
In recent future, wireless sensor networks ({WSNs}) will experience a broad high-scale deployment (millions of nodes in the national area) with multiple information sources per node, and with very specific requirements for signal processing. In parallel, the broad range deployment of {WSNs} facilitates the definition and execution of ambitious studies, with a large input data set and high computational complexity. These computation resources, very often heterogeneous and driven on-demand, can only be satisfied by high-performance Data Centers ({DCs}). The high economical and environmental impact of the energy consumption in {DCs} requires aggressive energy optimization policies. These policies have been already detected but not successfully proposed. In this context, this paper shows the following on-going research lines and obtained results. In the field of {WSNs}: energy optimization in the processing nodes from different abstraction levels, including reconfigurable application specific architectures, efficient customization of the memory hierarchy, energy-aware management of the wireless interface, and design automation for signal processing applications. In the field of {DCs}: energy-optimal workload assignment policies in heterogeneous {DCs}, resource management policies with energy consciousness, and efficient cooling mechanisms that will cooperate in the minimization of the electricity bill of the DCs that process the data provided by the WSNs.
Resumo:
Computation of Independent Sensitivities Using Maggi’s Formulation