952 resultados para inborn errors of metabolism
Resumo:
Cardiovascular diseases (CVD) are the main causes of death in the Western world. Among the risk factors that are modifiable by diet, for reducing cardiovascular disease risks, the total plasma concentrations of cholesterol, triglycerides, LDL-C, and HDL-C are the most important. Dietary measures can balance these components of the lipid profile thus reducing the risk of cardiovascular diseases. The main food components that affect the lipid profile and can be modified by diet are the saturated and trans fats, unsaturated fats, cholesterol, phytosterols, plant protein, and soluble fiber. A wealth of evidence suggests that saturated and trans fats and cholesterol in the diet raise the total plasma cholesterol and LDL-C. Trans fats also reduce HDL-C, an important lipoprotein for mediating the reverse cholesterol transport. On the other hand, phytosterols, plant proteins, isoflavones, and soluble fiber are protective diet factors against cardiovascular diseases by modulating plasma lipoprotein levels. These food components at certain concentrations are able to reduce the total cholesterol, TG, and LDL-C and raise the plasma levels of HDL-C. Therefore, diet is an important tool for the prevention and control of cardiovascular diseases, and should be taken into account as a whole, i.e., not only the food components that modulate plasma concentrations of lipoproteins, but also the diet content of macro nutrients and micronutrients should be considered.
Resumo:
The objective of the present study was to determine the effects of trans-10, cis-12 conjugated linoleic acid (CLA) in adipose tissue explant cultures of growing pigs on the following responses: lipogenesis (measured as rate of C-14-labeled glucose incorporation over a subsequent 2-h incubation in the presence or absence of insulin), lipolysis (release of non-esterified fatty acid over a 2-h incubation in the presence or absence of isoproterenol), activities of lipogenic enzymes, and mRNA abundance of fatty acid synthase (FAS). Adipose tissue explants from nine growing pigs (78 +/- 3 kg) were cultured in 199 medium with insulin, dexamethasone and antibiotics for 4, 12, 24, and 48 h. The treatments were 1) control: 100 mu M polyvinyl alcohol (PVA); 2) pGH: 100 ng/mL porcine growth hormone (pGH) plus 100 mu M PVA; 3) CLA200: 200 mu M trans-10, cis-12 CLA; 4) CLA50: 50 mu M trans-10, cis-12 CLA, and 5) LA: 200 mu M linoleic acid. Fatty acids were added along with PVA (2: 1), respectively, for 24 h. Explants were collected after each culture period and assayed for lipogenesis. Transcripts of FAS mRNA were quantified by real-time RT-PCR after 24 and 48 h. Lipolysis and activities of FAS, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and NADP-malate dehydrogenase were determined after 48 h. As expected, glucose incorporation was decreased (P < 0.05) in response to pGH treatment (positive control). LA had no effect on any parameter evaluated. Treatment with trans-10, cis-12 CLA decreased FAS activity (P < 0.05), but NADPH-generating enzymes were unaffected by treatments. Consistent with reduction in FAS activity, both lipid synthesis and FAS mRNA abundance were reduced with chronic CLA treatment, pGH increased baseline and stimulated lipolysis (P < 0.05) after 48 h of culture, while CLA treatment had no effect on non-esterified fatty acid release. Results of this study showed that trans-10, cis-12 CLA alters lipogenesis but has no effect on lipolysis in cultures of pig adipose tissue.
Resumo:
Background: Subclinical hypothyroidism (SCH) has been associated with atherosclerosis, but the abnormalities in plasma lipids that can contribute to atherogenesis are not prominent. The aim of this study was to test the hypothesis that patients with normocholesterolemic, normotriglyceridemic SCH display abnormalities in plasma lipid metabolism not detected in routine laboratory tests including abnormalities in the intravascular metabolism of triglyceride-rich lipoproteins, lipid transfers to high-density lipoprotein (HDL), and paraoxonase 1 activity. The impact of levothyroxine (LT4) treatment and euthyroidism in these parameters was also tested. Methods: The study included 12 SCH women and 10 matched controls. Plasma kinetics of an artificial triglyceride-rich emulsion labeled with radioactive triglycerides and cholesteryl esters as well as in vitro transfer of four lipids from an artificial donor nanoemulsion to HDL were determined at baseline in both groups and after 4 months of euthyroidism in the SCH group. Results: Fractional clearance rates of triglycerides (SCH 0.035 +/- 0.016 min(-1), controls 0.029 +/- 0.013 min(-1), p=0.336) and cholesteryl esters (SCH 0.009 +/- 0.007 min(-1), controls 0.009 +/- 0.009 min(-1), p=0.906) were equal in SCH and controls and were unchanged by LT4 treatment and euthyroidism in patients with SCH, suggesting that lipolysis and remnant removal of triglyceride-rich lipoproteins were normal. Transfer of triglycerides to HDL (SCH 3.6 +/- 0.48%, controls 4.7 +/- 0.63%, p=0.001) and phospholipids (SCH 16.2 +/- 3.58%, controls 21.2 +/- 3.32%, p=0.004) was reduced when compared with controls. After LT4 treatment, transfers increased and achieved normal values. Transfer of free and esterified cholesterol to HDL, HDL particle size, and paraoxonase 1 activity were similar to controls and were unchanged by treatment. Conclusions: Although intravascular metabolism of triglyceride-rich lipoproteins was normal, patients with SCH showed abnormalities in HDL metabolism that were reversed by LT4 treatment and achievement of euthyroidism.
Resumo:
Background: Schizophrenia is likely to be a consequence of DNA alterations that, together with environmental factors, will lead to protein expression differences and the ultimate establishment of the illness. The superior temporal gyrus is implicated in schizophrenia and executes functions such as the processing of speech, language skills and sound processing. Methods: We performed an individual comparative proteome analysis using two-dimensional gel electrophoresis of 9 schizophrenia and 6 healthy control patients' left posterior superior temporal gyrus (Wernicke's area - BA22p) identifying by mass spectrometry several protein expression alterations that could be related to the disease. Results: Our analysis revealed 11 downregulated and 14 upregulated proteins, most of them related to energy metabolism. Whereas many of the identified proteins have been previously implicated in schizophrenia, such as fructose-bisphosphate aldolase C, creatine kinase and neuron-specific enolase, new putative disease markers were also identified such as dihydrolipoyl dehydrogenase, tropomyosin 3, breast cancer metastasis-suppressor 1, heterogeneous nuclear ribonucleoproteins C1/C2 and phosphate carrier protein, mitochondrial precursor. Besides, the differential expression of peroxiredoxin 6 (PRDX6) and glial fibrillary acidic protein (GFAP) were confirmed by western blot in schizophrenia prefrontal cortex. Conclusion: Our data supports a dysregulation of energy metabolism in schizophrenia as well as suggests new markers that may contribute to a better understanding of this complex disease.
Resumo:
In this work we investigate knowledge acquisition as performed by multiple agents interacting as they infer, under the presence of observation errors, respective models of a complex system. We focus the specific case in which, at each time step, each agent takes into account its current observation as well as the average of the models of its neighbors. The agents are connected by a network of interaction of Erdos-Renyi or Barabasi-Albert type. First, we investigate situations in which one of the agents has a different probability of observation error (higher or lower). It is shown that the influence of this special agent over the quality of the models inferred by the rest of the network can be substantial, varying linearly with the respective degree of the agent with different estimation error. In case the degree of this agent is taken as a respective fitness parameter, the effect of the different estimation error is even more pronounced, becoming superlinear. To complement our analysis, we provide the analytical solution of the overall performance of the system. We also investigate the knowledge acquisition dynamic when the agents are grouped into communities. We verify that the inclusion of edges between agents (within a community) having higher probability of observation error promotes the loss of quality in the estimation of the agents in the other communities.
Resumo:
Background: There are several studies in the literature depicting measurement error in gene expression data and also, several others about regulatory network models. However, only a little fraction describes a combination of measurement error in mathematical regulatory networks and shows how to identify these networks under different rates of noise. Results: This article investigates the effects of measurement error on the estimation of the parameters in regulatory networks. Simulation studies indicate that, in both time series (dependent) and non-time series (independent) data, the measurement error strongly affects the estimated parameters of the regulatory network models, biasing them as predicted by the theory. Moreover, when testing the parameters of the regulatory network models, p-values computed by ignoring the measurement error are not reliable, since the rate of false positives are not controlled under the null hypothesis. In order to overcome these problems, we present an improved version of the Ordinary Least Square estimator in independent (regression models) and dependent (autoregressive models) data when the variables are subject to noises. Moreover, measurement error estimation procedures for microarrays are also described. Simulation results also show that both corrected methods perform better than the standard ones (i.e., ignoring measurement error). The proposed methodologies are illustrated using microarray data from lung cancer patients and mouse liver time series data. Conclusions: Measurement error dangerously affects the identification of regulatory network models, thus, they must be reduced or taken into account in order to avoid erroneous conclusions. This could be one of the reasons for high biological false positive rates identified in actual regulatory network models.
Resumo:
Active lymphocytes (LY) and macrophages (M Phi) are involved in the pathophysiology of rheumatoid arthritis (RA) Due to its anti-inflammatory effect. physical exercise may be beneficial in RA by acting on the immune system (IS) Thus, female Wistar rats with type II collagen-induced arthritis (CIA) were submitted to swimming training (6 weeks. 5 days/week. 60 min/day) and some biochemical and immune parameters, such as the metabolism of glucose and glutamine and function of LY and M. were evaluated In addition, plasma levels of some hormones and of interleukin-2 (IL-2) were also determined Results demonstrate that CIA increased lymphocyte proliferation (1.9- and 1 7-fold, respectively, in response to concanavalin A (ConA) and lipopolysaccharide (LPS)), as well as macrophage H(2)O(2) production (1 6-fold), in comparison to control Exercise training prevented the activation of immune cells, induced by CIA. and established a pattern of substrate utilization similar to that described as normal for these cells. Exercise also promoted an elevation of plasma levels of corticosterone (22 2%), progesterone (1 7-fold) and IL-2 (2 6-fold) Our data suggest that chronic exercise is able to counterbalance the effects of CIA on cells of the IS. reinforcing the proposal that the benefits of exercise may not be restricted to aerobic capacity and/or strength improvement Copyright (C) 2010 John Wiley & Sons, Ltd
Resumo:
This paper proposes a three-stage offline approach to detect, identify, and correct series and shunt branch parameter errors. In Stage 1 the branches suspected of having parameter errors are identified through an Identification Index (II). The II of a branch is the ratio between the number of measurements adjacent to that branch, whose normalized residuals are higher than a specified threshold value, and the total number of measurements adjacent to that branch. Using several measurement snapshots, in Stage 2 the suspicious parameters are estimated, in a simultaneous multiple-state-and-parameter estimation, via an augmented state and parameter estimator which increases the V - theta state vector for the inclusion of suspicious parameters. Stage 3 enables the validation of the estimation obtained in Stage 2, and is performed via a conventional weighted least squares estimator. Several simulation results (with IEEE bus systems) have demonstrated the reliability of the proposed approach to deal with single and multiple parameter errors in adjacent and non-adjacent branches, as well as in parallel transmission lines with series compensation. Finally the proposed approach is confirmed on tests performed on the Hydro-Quebec TransEnergie network.
Resumo:
A combination of chemostat cultivation and a defined medium was used to demonstrate that uracil limitation leads to a drastic alteration in the physiology of auxotrophic cells of Saccharomyces cerevisiae. Under this condition, the carbon source is dissimilated mainly to ethanol and acetate, even in fully aerobic cultures grown at 0.1 h(-1), which is far below the critical dilution rate. Differently from nitrogen-, sulphur-, or phosphate-limited cultures, uracil limitation leads to residual sugar (either glucose or sucrose) concentrations below 2 mM, which characterizes a situation of double-limitation: by the carbon source and by uracil. Furthermore, the specific rates of CO(2) production and O(2) consumption are increased when compared to the corresponding prototrophic strain. We conclude that when auxotrophic strains are to be used for quantitative physiological studies, special attention must be paid to the cultivation conditions, mainly regarding medium formulation, in order to avoid limitation of growth by the auxotrophic nutrient.
Resumo:
The procedure for online process control by attributes consists of inspecting a single item at every m produced items. It is decided on the basis of the inspection result whether the process is in-control (the conforming fraction is stable) or out-of-control (the conforming fraction is decreased, for example). Most articles about online process control have cited the stoppage of the production process for an adjustment when the inspected item is non-conforming (then the production is restarted in-control, here denominated as corrective adjustment). Moreover, the articles related to this subject do not present semi-economical designs (which may yield high quantities of non-conforming items), as they do not include a policy of preventive adjustments (in such case no item is inspected), which can be more economical, mainly if the inspected item can be misclassified. In this article, the possibility of preventive or corrective adjustments in the process is decided at every m produced item. If a preventive adjustment is decided upon, then no item is inspected. On the contrary, the m-th item is inspected; if it conforms, the production goes on, otherwise, an adjustment takes place and the process restarts in-control. This approach is economically feasible for some practical situations and the parameters of the proposed procedure are determined minimizing an average cost function subject to some statistical restrictions (for example, to assure a minimal levelfixed in advanceof conforming items in the production process). Numerical examples illustrate the proposal.
Resumo:
Aspartate kinase (AK, EC 2.7.2.4), homoserine dehydrogenase (HSDH, EC 1.1.1.3) and dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52) were isolated and partially purified from immature Chenopodium quinoa Willd seeds. Enzyme activities were studied in the presence of the aspartate-derived amino acids lysine, threonine and methionine and also the lysine analogue S-2-aminoethyl-L-cysteine (AEC), at 1 mM and 5 mM. The results confirmed the existence of, at least, two AK isoenzymes, one inhibited by lysine and the other inhibited by threonine, the latter being predominant in quinoa seeds. HSDH activity was also shown to be partially inhibited by threonine, whereas some of the activity was resistant to the inhibitory effect, indicating the presence of two isoenzymes, one resistant and another sensitive to threonine inhibition. Only one DHDPS isoenzyme highly sensitive to lysine inhibition was detected. The results suggest that the high concentration of lysine observed in quinoa seeds is possibly due to a combined effect of increased lysine, synthesis and accumulation in the soluble form and/or as protein lysine. Nitrogen assimilation was also investigated and based on nitrate content, nitrate reductase activity, amino acid distribution and ureide content, the leaves were identified as the predominant site of nitrate reduction in this plant species. The amino acid profile analysis in leaves and roots also indicated an important role of soluble glutamine as a nitrogen transporting compound. (c) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
BACKGROUND: Ascorbic acid is a very important compound for plants. It has essential functions, mainly as an antioxidant and growth regulator. Ascorbic acid biosynthesis has been extensively studied, but studies in fruits are very limited. In this work we studied the influence of five enzymes involved in synthesis (L-galactono-1,4-lactone dehydrogenase, GalLDH, EC 1.3.2.3), oxidation (ascorbate oxidase, EC 1.10.3.3, and ascorbate peroxidase, APX, EC and recycling (monodehydroascorbate reductase, EC 1.6.5.4, and dehydroascorbate reductase, DHAR, EC 1.8.5.1) on changes in ascorbic acid content during development and ripening of mangoes (Mangifera indica L. cv. Keitt) and during the ripening of white pulp guavas (Psidium guayava L. cv. Paloma). RESULTS: It was found that there was a balance between the activities of GalLDH, APX and DHAR, both in mangoes and guavas. CONCLUSIONS: Equilibrium between the enzymatic activities of synthesis, catabolism and recycling is important for the regulation of ascorbic acid content in mango and guava. These results have contributed to understanding some of the changes that occur in ascorbic acid levels during fruit ripening. (C) 2008 Society of Chemical Industry.
Resumo:
The mechanism of uptake of anthocyanins (as well as the type) from food in the intestine is not clear. Anthocyanin-rich extract from wild mulberry, composed of cyanidin-3-glucoside (79%) and cyanidin-3-rutino side (cy-3-rut) (19%), was orally administered to Wistar rats, and their concentrations were determined in plasma, kidney, and the gastrointestinal (GI) tract. The 2 glycosylated forms showed maximum concentration at 15 minutes after oral administration, both in plasma and kidney. The cyanidin-3-glucoside and cy-3-rut were found in plasma as glucuronides, as sulfates of cyanidin, and as unchanged forms. The area under the curve of concentration vs time (AUC(0-8h)) was 2.76 +/- 0.88 mu g hour/mL and 9.74 +/- 0.75 mu g hour/g for plasma and kidney, respectively. In spite of the low absorption, the increase in plasma anthocyanin level resulted in a significant increase in antioxidant capacity (P < .05). In the GI tract (stomach and small and large intestines), cyanidin glycosides were found unchanged, but a low amount of the aglycone form was present. Anthocyanin glycosides were no longer detected in the GI tract after 8 hours of administration. In vitro fermentation showed that the 2 cyanidin glycosides were totally metabolized by the rat colonic microflora, explaining their disappearance. In addition, the 2 products of their degradation, cyanidin and protocatechuic acid, were not detected in plasma and probably do not influence plasma antioxidant capacity. As found by the everted sac model, anthocyanins were transported across the enterocyte by the sodium-dependent glucose transporter. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
A variety of raw materials have been used in fermentation process. This study shows the use of rice straw hemicellulosic hydrolysate, as the only source of nutrient, to produce high added-value products. In the present work, the activity of the enzymes xylose reductase (XR); xylitol dehydrogenase (XD); and glucose-6-phosphate dehydrogenase (G6PD) during cultivation of Candida guilliermondii on rice straw hemicellulosic hydrolysate was measured and correlated with xylitol production under different pH values (around 4.5 and 7.5) and initial xylose concentration (around 30 and 70 g l(-1)). Independent of the pH value and xylose concentration evaluated, the title of XD remained constant. On the other hand, the volumetric activity of G6PD increased whereas the level of XR decreased when the initial xylose concentration was increased from 30 to 70 g l(-1). The highest values of xylitol productivity (Q (P) a parts per thousand 0.40 g l(-1)) and yield factor (Y (P/S) a parts per thousand 0.60 g g(-1)) were reached at highest G6PD/XR ratio and lowest XR/XD ratio. These results suggest that NADPH concentrations influence the formation of xylitol more than the activity ratios of the enzymes XR and XD. Thus, an optimal rate between G6PD and XR must be reached in order to optimize the xylitol production.
Resumo:
The tamarind (Tamarindus indica L) is indigenous to Asian countries and widely cultivated in the American continents. The tamarind fruit pulp extract (ExT), traditionally used in spices, food components and juices, is rich in polyphenols that have demonstrated anti-atherosclerotic, antioxidant and immunomodulatory activities. This study evaluated the modulator effect of a crude hydroalcoholic ExT on some peripheral human neutrophil functions. The neutrophil reactive oxygen species generation, triggered by opsonized zymosan (OZ), n-formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol myristate acetate (PMA), and assessed by luminol- and lucigenin-enhanced chemiluminescence (LumCL and LucCL, respectively), was inhibited by ExT in a concentration-dependent manner. ExT was a more effective inhibitor of the PMA-stimulated neutrophil function [IC(50) (in mu g/10(6)cells) = 115.7 +/- 9.7 (LumCL) and 174.5 +/- 25.9 (LucCL)], than the OZ- [IC(50) = 248.5 +/- 23.1 (LumCL) and 324.1 +/- 34.6 (LucCL)] or fMLP-stimulated cells [IC(50) = 178.5 +/- 12.2 (LumCL)]. The ExT also inhibited neutrophil NADPH oxidase activity (evaluated by O(2) consumption), degranulation and elastase activity (evaluated by spectrophotometric methods) at concentrations higher than 200 mu g/10(6) cells, without being toxic to the cells, under the conditions assessed. Together, these results indicate the potential of ExT as a source of compounds that can modulate the neutrophil-mediated inflammatory diseases. (C) 2008 Elsevier Ltd. All rights reserved.