908 resultados para image processing--digital techniques


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many parts of the world, uncontrolled fires in sparsely populated areas are a major concern as they can quickly grow into large and destructive conflagrations in short time spans. Detecting these fires has traditionally been a job for trained humans on the ground, or in the air. In many cases, these manned solutions are simply not able to survey the amount of area necessary to maintain sufficient vigilance and coverage. This paper investigates the use of unmanned aerial systems (UAS) for automated wildfire detection. The proposed system uses low-cost, consumer-grade electronics and sensors combined with various airframes to create a system suitable for automatic detection of wildfires. The system employs automatic image processing techniques to analyze captured images and autonomously detect fire-related features such as fire lines, burnt regions, and flammable material. This image recognition algorithm is designed to cope with environmental occlusions such as shadows, smoke and obstructions. Once the fire is identified and classified, it is used to initialize a spatial/temporal fire simulation. This simulation is based on occupancy maps whose fidelity can be varied to include stochastic elements, various types of vegetation, weather conditions, and unique terrain. The simulations can be used to predict the effects of optimized firefighting methods to prevent the future propagation of the fires and greatly reduce time to detection of wildfires, thereby greatly minimizing the ensuing damage. This paper also documents experimental flight tests using a SenseFly Swinglet UAS conducted in Brisbane, Australia as well as modifications for custom UAS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agricultural pests are responsible for millions of dollars in crop losses and management costs every year. In order to implement optimal site-specific treatments and reduce control costs, new methods to accurately monitor and assess pest damage need to be investigated. In this paper we explore the combination of unmanned aerial vehicles (UAV), remote sensing and machine learning techniques as a promising technology to address this challenge. The deployment of UAVs as a sensor platform is a rapidly growing field of study for biosecurity and precision agriculture applications. In this experiment, a data collection campaign is performed over a sorghum crop severely damaged by white grubs (Coleoptera: Scarabaeidae). The larvae of these scarab beetles feed on the roots of plants, which in turn impairs root exploration of the soil profile. In the field, crop health status could be classified according to three levels: bare soil where plants were decimated, transition zones of reduced plant density and healthy canopy areas. In this study, we describe the UAV platform deployed to collect high-resolution RGB imagery as well as the image processing pipeline implemented to create an orthoimage. An unsupervised machine learning approach is formulated in order to create a meaningful partition of the image into each of the crop levels. The aim of the approach is to simplify the image analysis step by minimizing user input requirements and avoiding the manual data labeling necessary in supervised learning approaches. The implemented algorithm is based on the K-means clustering algorithm. In order to control high-frequency components present in the feature space, a neighbourhood-oriented parameter is introduced by applying Gaussian convolution kernels prior to K-means. The outcome of this approach is a soft K-means algorithm similar to the EM algorithm for Gaussian mixture models. The results show the algorithm delivers decision boundaries that consistently classify the field into three clusters, one for each crop health level. The methodology presented in this paper represents a venue for further research towards automated crop damage assessments and biosecurity surveillance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The most difficult operation in the flood inundation mapping using optical flood images is to separate fully inundated areas from the ‘wet’ areas where trees and houses are partly covered by water. This can be referred as a typical problem the presence of mixed pixels in the images. A number of automatic information extraction image classification algorithms have been developed over the years for flood mapping using optical remote sensing images. Most classification algorithms generally, help in selecting a pixel in a particular class label with the greatest likelihood. However, these hard classification methods often fail to generate a reliable flood inundation mapping because the presence of mixed pixels in the images. To solve the mixed pixel problem advanced image processing techniques are adopted and Linear Spectral unmixing method is one of the most popular soft classification technique used for mixed pixel analysis. The good performance of linear spectral unmixing depends on two important issues, those are, the method of selecting endmembers and the method to model the endmembers for unmixing. This paper presents an improvement in the adaptive selection of endmember subset for each pixel in spectral unmixing method for reliable flood mapping. Using a fixed set of endmembers for spectral unmixing all pixels in an entire image might cause over estimation of the endmember spectra residing in a mixed pixel and hence cause reducing the performance level of spectral unmixing. Compared to this, application of estimated adaptive subset of endmembers for each pixel can decrease the residual error in unmixing results and provide a reliable output. In this current paper, it has also been proved that this proposed method can improve the accuracy of conventional linear unmixing methods and also easy to apply. Three different linear spectral unmixing methods were applied to test the improvement in unmixing results. Experiments were conducted in three different sets of Landsat-5 TM images of three different flood events in Australia to examine the method on different flooding conditions and achieved satisfactory outcomes in flood mapping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a growing and pruning radial basis function based no-reference (NR) image quality model for JPEG-coded images. The quality of the images are estimated without referring to their original images. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity factors such as edge amplitude, edge length, background activity and background luminance. Image quality estimation involves computation of functional relationship between HVS features and subjective test scores. Here, the problem of quality estimation is transformed to a function approximation problem and solved using GAP-RBF network. GAP-RBF network uses sequential learning algorithm to approximate the functional relationship. The computational complexity and memory requirement are less in GAP-RBF algorithm compared to other batch learning algorithms. Also, the GAP-RBF algorithm finds a compact image quality model and does not require retraining when the new image samples are presented. Experimental results prove that the GAP-RBF image quality model does emulate the mean opinion score (MOS). The subjective test results of the proposed metric are compared with JPEG no-reference image quality index as well as full-reference structural similarity image quality index and it is observed to outperform both.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Denoising of medical images in wavelet domain has potential application in transmission technologies such as teleradiology. This technique becomes all the more attractive when we consider the progressive transmission in a teleradiology system. The transmitted images are corrupted mainly due to noisy channels. In this paper, we present a new real time image denoising scheme based on limited restoration of bit-planes of wavelet coefficients. The proposed scheme exploits the fundamental property of wavelet transform - its ability to analyze the image at different resolution levels and the edge information associated with each sub-band. The desired bit-rate control is achieved by applying the restoration on a limited number of bit-planes subject to the optimal smoothing. The proposed method adapts itself to the preference of the medical expert; a single parameter can be used to balance the preservation of (expert-dependent) relevant details against the degree of noise reduction. The proposed scheme relies on the fact that noise commonly manifests itself as a fine-grained structure in image and wavelet transform allows the restoration strategy to adapt itself according to directional features of edges. The proposed approach shows promising results when compared with unrestored case, in context of error reduction. It also has capability to adapt to situations where noise level in the image varies and with the changing requirements of medical-experts. The applicability of the proposed approach has implications in restoration of medical images in teleradiology systems. The proposed scheme is computationally efficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of split lenses for multiple imaging and multichannel optical processing is demonstrated. Conditions are obtained for nonoverlapping of multipled images and avoiding crosstalk in the multichannel processing. Almost uniform intensity across the multipled images is an advantage here, while the low ƒ/No. of the split lens segments puts a limit in the resolution in image processing. Experimental results of multiple imaging and of a few multichannel processing are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An adaptive regularization algorithm that combines elementwise photon absorption and data misfit is proposed to stabilize the non-linear ill-posed inverse problem. The diffuse photon distribution is low near the target compared to the normal region. A Hessian is proposed based on light and tissue interaction, and is estimated using adjoint method by distributing the sources inside the discretized domain. As iteration progresses, the photon absorption near the inhomogeneity becomes high and carries more weightage to the regularization matrix. The domain's interior photon absorption and misfit based adaptive regularization method improves quality of the reconstructed Diffuse Optical Tomographic images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method to reliably extract object profiles even with height discontinuities (that leads to 2n pi phase jumps) is proposed. This method uses Fourier transform profilometry to extract wrapped phase, and an additional image formed by illuminating the object of interest by a novel gray coded pattern for phase unwrapping. Simulation results suggest that the proposed approach not only retains the advantages of the original method, but also contributes significantly in the enhancement of its performance. Fundamental advantage of this method stems from the fact that both extraction of wrapped phase and unwrapping the same were done by gray scale images. Hence, unlike the methods that use colors, proposed method doesn't demand a color CCD camera and is ideal for profiling objects with multiple colors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we evaluate performance of a real-world image processing application that uses a cross-correlation algorithm to compare a given image with a reference one. The algorithm processes individual images represented as 2-dimensional matrices of single-precision floating-point values using O(n4) operations involving dot-products and additions. We implement this algorithm on a nVidia GTX 285 GPU using CUDA, and also parallelize it for the Intel Xeon (Nehalem) and IBM Power7 processors, using both manual and automatic techniques. Pthreads and OpenMP with SSE and VSX vector intrinsics are used for the manually parallelized version, while a state-of-the-art optimization framework based on the polyhedral model is used for automatic compiler parallelization and optimization. The performance of this algorithm on the nVidia GPU suffers from: (1) a smaller shared memory, (2) unaligned device memory access patterns, (3) expensive atomic operations, and (4) weaker single-thread performance. On commodity multi-core processors, the application dataset is small enough to fit in caches, and when parallelized using a combination of task and short-vector data parallelism (via SSE/VSX) or through fully automatic optimization from the compiler, the application matches or beats the performance of the GPU version. The primary reasons for better multi-core performance include larger and faster caches, higher clock frequency, higher on-chip memory bandwidth, and better compiler optimization and support for parallelization. The best performing versions on the Power7, Nehalem, and GTX 285 run in 1.02s, 1.82s, and 1.75s, respectively. These results conclusively demonstrate that, under certain conditions, it is possible for a FLOP-intensive structured application running on a multi-core processor to match or even beat the performance of an equivalent GPU version.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fully structured and matured open source spatial and temporal analysis technology seems to be the official carrier of the future for planning of the natural resources especially in the developing nations. This technology has gained enormous momentum because of technical superiority, affordability and ability to join expertise from all sections of the society. Sustainable development of a region depends on the integrated planning approaches adopted in decision making which requires timely and accurate spatial data. With the increased developmental programmes, the need for appropriate decision support system has increased in order to analyse and visualise the decisions associated with spatial and temporal aspects of natural resources. In this regard Geographic Information System (GIS) along with remote sensing data support the applications that involve spatial and temporal analysis on digital thematic maps and the remotely sensed images. Open source GIS would help in wide scale applications involving decisions at various hierarchical levels (for example from village panchayat to planning commission) on economic viability, social acceptance apart from technical feasibility. GRASS (Geographic Resources Analysis Support System, http://wgbis.ces.iisc.ernet.in/grass) is an open source GIS that works on Linux platform (freeware), but most of the applications are in command line argument, necessitating a user friendly and cost effective graphical user interface (GUI). Keeping these aspects in mind, Geographic Resources Decision Support System (GRDSS) has been developed with functionality such as raster, topological vector, image processing, statistical analysis, geographical analysis, graphics production, etc. This operates through a GUI developed in Tcltk (Tool command language / Tool kit) under Linux as well as with a shell in X-Windows. GRDSS include options such as Import /Export of different data formats, Display, Digital Image processing, Map editing, Raster Analysis, Vector Analysis, Point Analysis, Spatial Query, which are required for regional planning such as watershed Analysis, Landscape Analysis etc. This is customised to Indian context with an option to extract individual band from the IRS (Indian Remote Sensing Satellites) data, which is in BIL (Band Interleaved by Lines) format. The integration of PostgreSQL (a freeware) in GRDSS aids as an efficient database management system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Image and video filtering is a key image-processing task in computer vision especially in noisy environment. In most of the cases the noise source is unknown and hence possess a major difficulty in the filtering operation. In this paper we present an error-correction based learning approach for iterative filtering. A new FIR filter is designed in which the filter coefficients are updated based on Widrow-Hoff rule. Unlike the standard filter the proposed filter has the ability to remove noise without the a priori knowledge of the noise. Experimental result shows that the proposed filter efficiently removes the noise and preserves the edges in the image. We demonstrate the capability of the proposed algorithm by testing it on standard images infected by Gaussian noise and on a real time video containing inherent noise. Experimental result shows that the proposed filter is better than some of the existing standard filters

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Image filtering techniques have numerous potential applications in biomedical imaging and image processing. The design of filters largely depends on the a-priori knowledge about the type of noise corrupting the image and image features. This makes the standard filters to be application and image specific. The most popular filters such as average, Gaussian and Wiener reduce noisy artifacts by smoothing. However, this operation normally results in smoothing of the edges as well. On the other hand, sharpening filters enhance the high frequency details making the image non-smooth. An integrated general approach to design filters based on discrete cosine transform (DCT) is proposed in this study for optimal medical image filtering. This algorithm exploits the better energy compaction property of DCT and re-arrange these coefficients in a wavelet manner to get the better energy clustering at desired spatial locations. This algorithm performs optimal smoothing of the noisy image by preserving high and low frequency features. Evaluation results show that the proposed filter is robust under various noise distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental study on liquid mass distribution in effervescent sprays using water and air as working fluids is presented in this paper. Optical patternation and techniques of image processing are employed for analyzing the spray. The flow regime inside the effervescent atomizer largely dictates the mass distribution patterns. The patterns are seen to vary from concentrated, poorly atomized liquid lumps to uniformly distributed, fine droplets as the flow regime changes from bubbly flow to annular flow. A large variety of instantaneous spray patterns are observed in bubbly flow regime indicating a highly unsteady atomization process. However, relatively better consistency in spray patterns is observed at higher gas flow rates. Thus, the degree of unsteadiness gradually diminishes as gas flow rate is increased. The axial evolution of the spray in annular mode shows good mixing of liquid and gas across the interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a semi-automatic tool for annotation of multi-script text from natural scene images. To our knowledge, this is the maiden tool that deals with multi-script text or arbitrary orientation. The procedure involves manual seed selection followed by a region growing process to segment each word present in the image. The threshold for region growing can be varied by the user so as to ensure pixel-accurate character segmentation. The text present in the image is tagged word-by-word. A virtual keyboard interface has also been designed for entering the ground truth in ten Indic scripts, besides English. The keyboard interface can easily be generated for any script, thereby expanding the scope of the toolkit. Optionally, each segmented word can further be labeled into its constituent characters/symbols. Polygonal masks are used to split or merge the segmented words into valid characters/symbols. The ground truth is represented by a pixel-level segmented image and a '.txt' file that contains information about the number of words in the image, word bounding boxes, script and ground truth Unicode. The toolkit, developed using MATLAB, can be used to generate ground truth and annotation for any generic document image. Thus, it is useful for researchers in the document image processing community for evaluating the performance of document analysis and recognition techniques. The multi-script annotation toolokit (MAST) is available for free download.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Medical image segmentation finds application in computer-aided diagnosis, computer-guided surgery, measuring tissue volumes, locating tumors, and pathologies. One approach to segmentation is to use active contours or snakes. Active contours start from an initialization (often manually specified) and are guided by image-dependent forces to the object boundary. Snakes may also be guided by gradient vector fields associated with an image. The first main result in this direction is that of Xu and Prince, who proposed the notion of gradient vector flow (GVF), which is computed iteratively. We propose a new formalism to compute the vector flow based on the notion of bilateral filtering of the gradient field associated with the edge map - we refer to it as the bilateral vector flow (BVF). The range kernel definition that we employ is different from the one employed in the standard Gaussian bilateral filter. The advantage of the BVF formalism is that smooth gradient vector flow fields with enhanced edge information can be computed noniteratively. The quality of image segmentation turned out to be on par with that obtained using the GVF and in some cases better than the GVF.