977 resultados para image noise modeling
Resumo:
Recently, companies developed strategies which may influence their Corporate Social Responsibility (CSR) image. This paper discusses the image of four different supermarkets with stores in Portugal. The research compares CSR image and brand attitude of the four supermarkets. Empirical evidence shows that different supermarkets belonging to the same company have different CSR image and brand attitude. The research also confirms that there is positive correlation between CSR image and attitude towards the brand. Further, the results offer empirical evidence that CSR image and brand attitude influence purchase intention of supermarket brands. Finally, brand purchase intention is highly influenced by attitude towards the brand than CSR image.
Resumo:
The characterization of physical properties of digital imaging systems requires the determination and measurement of detectors’ physical performance. Those measures such as modulation transfer function (MTF), noise power spectra (NPS), and detective quantum efficiency (DQE) provide objective evaluations of digital detectors’ performance. To provide an MTF, NPS, and DQE calculation from raw-data images it is necessary to implement a method that is undertaken by two major steps: (1) image acquisition and (2) quantitative measure determination method. In this chapter a comprehensive description about a method to provide the measure of performance of digital radiography detectors is provided.
Resumo:
This chapter provides a theoretical background about image quality in diagnostic radiology. Digital image representation and also image quality evaluation methods are here discussed. An overview of methods for quality evaluation of diagnostic imaging procedures is provided. Digital image representation and primary physical image quality parameters are also discussed, including objective image quality measurements and observer performance methods.
Resumo:
Once in a digital form, a radiographic image may be processed in several ways in order to turn the visualization an act of improved diagnostic value. Practitioners should be aware that, depending on each clinical context, digital image processing techniques are available to help to unveil visual information that is, in fact, carried by the bare digital radiograph and may be otherwise neglected. The range of visual enhancement procedures includes simple techniques that deal with the usual brightness and contrast manipulation up to much more elaborate multi-scale processing that provides customized control over the emphasis given to the relevant finer anatomical details. This chapter is intended to give the reader a practical understanding of image enhancement techniques that might be helpful to improve the visual quality of the digital radiographs and thus to contribute to a more reliable and assertive reporting.
Resumo:
Fluorescence confocal microscopy (FCM) is now one of the most important tools in biomedicine research. In fact, it makes it possible to accurately study the dynamic processes occurring inside the cell and its nucleus by following the motion of fluorescent molecules over time. Due to the small amount of acquired radiation and the huge optical and electronics amplification, the FCM images are usually corrupted by a severe type of Poisson noise. This noise may be even more damaging when very low intensity incident radiation is used to avoid phototoxicity. In this paper, a Bayesian algorithm is proposed to remove the Poisson intensity dependent noise corrupting the FCM image sequences. The observations are organized in a 3-D tensor where each plane is one of the images acquired along the time of a cell nucleus using the fluorescence loss in photobleaching (FLIP) technique. The method removes simultaneously the noise by considering different spatial and temporal correlations. This is accomplished by using an anisotropic 3-D filter that may be separately tuned in space and in time dimensions. Tests using synthetic and real data are described and presented to illustrate the application of the algorithm. A comparison with several state-of-the-art algorithms is also presented.
Resumo:
O documento em anexo encontra-se na versão post-print (versão corrigida pelo editor).
Resumo:
This paper proposes a novel framework for modelling the Value for the Customer, the so-called the Conceptual Model for Decomposing Value for the Customer (CMDVC). This conceptual model is first validated through an exploratory case study where the authors validate both the proposed constructs of the model and their relations. In a second step the authors propose a mathematical formulation for the CMDVC as well as a computational method. This has enabled the final quantitative discussion of how the CMDVC can be applied and used in the enterprise environment, and the final validation by the people in the enterprise. Along this research, we were able to confirm that the results of this novel quantitative approach to model the Value for the Customer is consistent with the company's empirical experience. The paper further discusses the merits and limitations of this approach, proposing that the model is likely to bring value to support not only the contract preparation at an Ex-Ante Negotiation Phase, as demonstrated, but also along the actual negotiation process, as finally confirmed by an enterprise testimonial.
Resumo:
Storm- and tsunami-deposits are generated by similar depositional mechanisms making their discrimination hard to establish using classic sedimentologic methods. Here we propose an original approach to identify tsunami-induced deposits by combining numerical simulation and rock magnetism. To test our method, we investigate the tsunami deposit of the Boca do Rio estuary generated by the 1755 earthquake in Lisbon which is well described in the literature. We first test the 1755 tsunami scenario using a numerical inundation model to provide physical parameters for the tsunami wave. Then we use concentration (MS. SIRM) and grain size (chi(ARM), ARM, B1/2, ARM/SIRM) sensitive magnetic proxies coupled with SEM microscopy to unravel the magnetic mineralogy of the tsunami-induced deposit and its associated depositional mechanisms. In order to study the connection between the tsunami deposit and the different sedimentologic units present in the estuary, magnetic data were processed by multivariate statistical analyses. Our numerical simulation show a large inundation of the estuary with flow depths varying from 0.5 to 6 m and run up of similar to 7 m. Magnetic data show a dominance of paramagnetic minerals (quartz) mixed with lesser amount of ferromagnetic minerals, namely titanomagnetite and titanohematite both of a detrital origin and reworked from the underlying units. Multivariate statistical analyses indicate a better connection between the tsunami-induced deposit and a mixture of Units C and D. All these results point to a scenario where the energy released by the tsunami wave was strong enough to overtop and erode important amount of sand from the littoral dune and mixed it with reworked materials from underlying layers at least 1 m in depth. The method tested here represents an original and promising tool to identify tsunami-induced deposits in similar embayed beach environments.
Resumo:
Personal memories composed of digital pictures are very popular at the moment. To retrieve these media items annotation is required. During the last years, several approaches have been proposed in order to overcome the image annotation problem. This paper presents our proposals to address this problem. Automatic and semi-automatic learning methods for semantic concepts are presented. The automatic method is based on semantic concepts estimated using visual content, context metadata and audio information. The semi-automatic method is based on results provided by a computer game. The paper describes our proposals and presents their evaluations.
Resumo:
Tuberculosis (TB) is a worldwide infectious disease that has shown over time extremely high mortality levels. The urgent need to develop new antitubercular drugs is due to the increasing rate of appearance of multi-drug resistant strains to the commonly used drugs, and the longer durations of therapy and recovery, particularly in immuno-compromised patients. The major goal of the present study is the exploration of data from different families of compounds through the use of a variety of machine learning techniques so that robust QSAR-based models can be developed to further guide in the quest for new potent anti-TB compounds. Eight QSAR models were built using various types of descriptors (from ADRIANA.Code and Dragon software) with two publicly available structurally diverse data sets, including recent data deposited in PubChem. QSAR methodologies used Random Forests and Associative Neural Networks. Predictions for the external evaluation sets obtained accuracies in the range of 0.76-0.88 (for active/inactive classifications) and Q(2)=0.66-0.89 for regressions. Models developed in this study can be used to estimate the anti-TB activity of drug candidates at early stages of drug development (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The paper proposes a methodology to increase the probability of delivering power to any load point by identifying new investments in distribution energy systems. The proposed methodology is based on statistical failure and repair data of distribution components and it uses a fuzzy-probabilistic modeling for the components outage parameters. The fuzzy membership functions of the outage parameters of each component are based on statistical records. A mixed integer nonlinear programming optimization model is developed in order to identify the adequate investments in distribution energy system components which allow increasing the probability of delivering power to any customer in the distribution system at the minimum possible cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 180 bus distribution network.
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde. Área de especialização: Imagem Digital com Radiação X.
Resumo:
Myocardial perfusion-gated-SPECT (MP-gated-SPECT) imaging often shows radiotracer uptake in abdominal organs. This accumulation interferes frequently with qualitative and quantitative assessment of the infero-septal region of myocardium. The objective of this study is to evaluate the effect of ingestion of different fat content on the reduction of extra-myocardial uptake and to improve MP-gated-SPECT image quality. In this study, 150 patients (65 ^ 18 years) who were referred for MP-gated-SPECT underwent a 1-day-protocol including imaging after stress (physical or pharmacological) and resting conditions. All patients gave written informed consent. Patients were subdivided into five groups: GI, GII, GIII, GIV and GV. In the first four groups, patients ate two chocolate bars with different fat content. Patients in GV – control group (CG) – had just water. Uptake indices (UI) of myocardium (M)/liver(L) and M/stomach–proximal bowel(S) revealed lower UI of M/S at rest in all groups. Both stress and rest studies using different food intake indicate that patients who ate chocolate with different fat content showed better UI of M/L than the CG. The UI of M/L and M/S of groups obtained under physical stress are clearly superior to that of groups obtained under pharmacological stress. These differences are only significant in patients who ate high-fat chocolate or drank water. The analysis of all stress studies together (GI, GII, GIII and GIV) in comparison with CG shows higher mean ranks of UI of M/L for those who ate high-fat chocolate. After pharmacological stress, the mean ranks of UI of M/L were higher for patients who ate high- and low-fat chocolate. In conclusion, eating food with fat content after radiotracer injection increases, respectively, the UI of M/L after stress and rest in MP-gated-SPECT studies. It is, therefore, recommended that patients eat a chocolate bar after radiotracer injection and before image acquisition.
Resumo:
In the context of previous publications, we propose a new lightweight UM process, intended to work as a tourism recommender system in a commercial environment. The new process tackles issues like cold start, gray sheep and over specialization through a rich user model and the application of a gradual forgetting function to the collected user action history. Also, significant performance improvements were achieved regarding the previously proposed UM process.
Resumo:
This paper aims to present a multi-agent model for a simulation, whose goal is to help one specific participant of multi-criteria group decision making process.This model has five main intervenient types: the human participant, who is using the simulation and argumentation support system; the participant agents, one associated to the human participant and the others simulating the others human members of the decision meeting group; the directory agent; the proposal agents, representing the different alternatives for a decision (the alternatives are evaluated based on criteria); and the voting agent responsiblefor all voting machanisms.At this stage it is proposed a two phse algorithm. In the first phase each participantagent makes his own evaluation of the proposals under discussion, and the voting agent proposes a simulation of a voting process.In the second phase, after the dissemination of the voting results,each one ofthe partcipan agents will argue to convince the others to choose one of the possible alternatives. The arguments used to convince a specific participant are dependent on agent knowledge about that participant. This two-phase algorithm is applied iteratively.