926 resultados para genomic fingerprinting
Resumo:
Alcoholism results in changes in the human brain which reinforce the cycle of craving and dependency, and these changes are manifest in the pattern of expression of mRNA and proteins in key cells and brain areas. Long-term alcohol abuse also results in damage to selected regions of the cortex. We have used cDNA microarrays to show that less than 1% of mRNA transcripts differ signifi cantly between cases and controls in the susceptible area and that the expression profi le of a subset of these transcripts is suffi cient to distinguish alcohol abusers from controls. In addition, we have utilized a 2D gel proteomics based approach to determine the identity of proteins in the superior frontal cortex (SFC) of the human brain that show differential expression in controls and long term alcohol abusers. Overall, 182 proteins differed by the criterion of > 2-fold between case and control samples. Of these, 139 showed signifi cantly lower expression in alcoholics, 35 showed signifi cantly higher expression, and 8 were new or had disappeared. To date 63 proteins have been identifi ed. The expression of one family of proteins, the synucleins, has been further characterized using Real Time PCR and Western Blotting. The expression of alpha-synuclein mRNA was signifi cantly lower in the SFC of alcoholics compared with the same area in controls (P = 0.01) whereas no such difference in expression was found in the motor cortex. The expression of beta- and gamma- synuclein were not signifi cantly different between alcoholics and controls. In contrast, the pattern of alphasynuclein protein expression differs from that of the corresponding RNA transcript. Because of the key role of synaptic proteins in the pathogenesis of alcoholism, we are developing 2-D DIGE based techniques to quantify expression changes in synaptosomes prepared from the SFC of controls and alcoholics.
Resumo:
Poor water solubility is characterised by low dissolution rate and consequently reduced bioavailability. Formulation of solid dispersion of the drug has attracted considerable interest as a means of improving dissolution process of a range of poorly water soluble drugs. This current study investigates the formulation of solid dispersion for a range of poorly water soluble drugs with varying physicochemical properties including paracetamol, sulphamethoxazole, phenacetin, indomethacin, chloramphenicol, phenylbutazone and succinylsulphathiazole. Solid dispersions were prepared using various drugs to polymer ratios. PEG 8000 was selected as a carrier in the solid dispersions. The study revealed that inclusion of drug within the polymeric matrix, ratio of drug to polymer and physicochemical properties of the drug molecules enhance the dissolution rate. Characterisations of the solid dispersions were performed using DSC, FTIR and SEM. These studies revealed that all seven drugs were present in the amorphous form within the solid dispersions and there was a lack of interaction between the PEG 8000 and drug. Stability studies for solid dispersions showed that all seven drugs studied were unstable at accelerated conditions (40°C±2°C/75%RH±5%RH) whereas, they were found to be stable for 12 months at room conditions. Permeability of indomethacin, phenacetin, phenylbutazone and paracetamol were higher for solid dispersions as compared to drug alone across Caco-2 cell monolayers. From the cell uptake studies it was shown that PEG 8000 enhanced rhodamine123 uptake which suggested that PEG 8000 may increase the permeability of these drugs in solid dispersions. Gene expression profiles analyzing the expression changes in the ABC and solute carrier transporter during permeability studies.ABCA10, ABCB4, ABCC12, SLC12A6, MCT13, SLC22A12 and SLC6A6 gene expression were increased by indomethacin alone whereas solid dispersion of indomethacin resulted in a slight increase in expression. ABCC12 and SAMC gene expression was increased in case of paracetamol alone but slightly increased when exposed to solid dispersion of paracetamol.
Tear analysis and lens-tear interactions:Part I. Protein fingerprinting with microfluidic technology
Resumo:
The purpose of this work is to establish the application of a fully automated microfluidic chip based protein separation assay in tear analysis. It is rapid, requires small sample volumes and is vastly superior to, and more convenient than, comparable conventional gel electrophoresis assays. The protein sizing chip technology was applied to three specific fields of analysis. Firstly tear samples were collected regularly from subjects establishing the baseline effects of tear stimulation, tear state and patient health. Secondly tear samples were taken from lens wearing eyes and thirdly the use of microfluidic technology was assessed as a means to investigate a novel area of tear analysis, which we have termed the 'tear envelope'. Utilising the Agilent 2100 Bioanalyzer in combination with the Protein 200 Plus LabChip kit, these studies investigated tear proteins in the range of 14-200 kDa. Particular attention was paid to the relative concentrations of lysozyme, tear lipocalin, secretory IgA (sIgA), IgG and lactoferrin, together with the overall tear electropherogram 'fingerprint'. Furthermore, whilst lens-tear interaction studies are generally thought of as an investigation into the effects of tears components on the contact lens material, i.e. deposition studies, this report addresses the reverse phenomenon-the effect of the lens, and particularly the newly inserted lens, on the tear fluid composition and dynamics. The use of microfluidic technology provides a significant advance in tear studies and should prove invaluable in tear diagnostics and contact lens performance analysis.
Resumo:
Object. Craniopharyngioma is the most common childhood brain tumor and is thought to arise from embryonic remnants of the Rathke pouch. Some craniopharyngiomas are monoclonal in origin and hence presumably harbor somatic genetic alterations, although the precise molecular mechanisms involved in craniopharyngioma development are unknown. The goal of this study was to identify genetic alterations in craniopharyngiomas. Methods. To gain insight into the molecular mechanisms involved in development of these tumors, the authors analyzed nine adamantinomatous craniopharyngiomas by using comparative genomic hybridization. Six tumors (67%) displayed at least one genomic alteration, and three had six or more alterations. Only two tumors displayed a decrease in DNA copy number, and in all others an increase in DNA copy number was noted. Conclusions. The authors conclude that a subset of craniopharyngiomas consists of monoclonal tumors arising from activation of oncogenes located at specific chromosomal loci.
Resumo:
Angiotensin converting enzyme (ACE) inhibitors lisinopril and ramipril were selected from EMA/480197/2010 and the potassium-sparing diuretic spironolactone was selected from the NHS specials list for November 2011 drug tariff with the view to produce oral liquid formulations providing dosage forms targeting paediatrics. Lisinopril, ramipril and spironolactone were chosen for their interaction with transporter proteins in the small intestine. Formulation limitations such as poor solubility or pH sensitivity needed consideration. Lisinopril was formulated without extensive development as drug and excipients were water soluble. Ramipril and spironolactone are both insoluble in water and strategies combating this were employed. Ramipril was successfully solubilised using low concentrations of acetic acid in a co-solvent system and also via complexation with hydroxypropyl-β-cyclodextrin. A ramipril suspension was produced to take formulation development in a third direction. Spironolactone dosages were too high for solubilisation techniques to be effective so suspensions were developed. A buffer controlled pH for the sensitive drug whilst a precisely balanced surfactant and suspending agent mix provided excellent physical stability. Characterisation, stability profiling and permeability assessment were performed following formulation development. The formulation process highlighted current shortcomings in techniques for taste assessment of pharmaceutical preparations resulting in early stage research into a novel in vitro cell based assay. The formulations developed in the initial phase of the research were used as model formulations investigating microarray application in an in vitro-in vivo correlation for carrier mediated drug absorption. Caco-2 cells were assessed following transport studies for changes in genetic expression of the ATP-binding cassette and solute carrier transporter superfamilies. Findings of which were compared to in vitro and in vivo permeability findings. It was not possible to ascertain a correlation between in vivo drug absorption and the expression of individual genes or even gene families, however there was a correlation (R2 = 0.9934) between the total number of genes with significantly changed expression levels and the predicted human absorption.
Resumo:
Drug resistance was first identified in cancer cells that express proteins known as multidrug resistance proteins that extrude the therapeutic agents out of the cells resulting in alteration of pharmacokinetics, tissue distribution, and pharmacodynamics of drugs. To this end studies were carried out to investigate the role of pharmacological inhibitors and pharmaceutical excipients with a primary focus on P-glycoprotein (P-gp). The aim of this study was to investigate holistic changes in transporter gene expression during permeability upon formulation of indomethacin as solid dispersion. Initial characterization studies of solid dispersion of indomethacin showed that the drug was dispersed within the carrier in amorphous form. Analysis of permeability data across Caco-2 monolayers revealed that drug absorption increased by 4-fold when reformulated as solid dispersion. The last phase of the work involved investigation of gene expression changes of transporter genes during permeability. The results showed that there were significant differences in the expression of both ATP-binding cassette (ABC) transporter genes as well as solute carrier transporter (SLC) genes suggesting that the inclusion of polyethylene glycol as well as changes in molecular form of drug from crystalline to amorphous have a significant bearing on the expression of transporter network genes resulting in differences in drug permeability. © 2011 Informa UK, Ltd.
Resumo:
In the first part of this study human immunodeficiency virus type 1 (HIV-1) proviral DNA sequences derived from 201 clones of the C2-V3 env region and the first exon of the tat gene were obtained from six MV-1 infected heterosexual couples. These molecular data were used to confirm the epidemiological relationships. The ability of the molecular data to draw such conclusions was also tested with multiple phylogenetic analyses. The tat region was much more useful in establishing epidemiological relationships than the commonly used C2-V3.^ Subsequently, using nucleotide sequences from the first exon of the Tat gene, we tested the hypothesis that a Florida dentist (a common source) infected five of his patients in the course of dental procedures, against the null hypothesis that the dentist and each individual of the dental group independently acquired the virus within the local community. Multiple phylogenetic analyses demonstrated that the sequences of the five patients were significantly more related to each other than to sequences of the controls. Our results using Tat sequences, combined with envelope sequence data, strongly support a common phylogenetic epidemiological relationship among these five patients.^ A third study is presented, which deals with the effects of genomic variations in drug resistance. HIV-1 reverse transcriptase (RT) mutations were detected in DNA from peripheral blood mononuclear cells from 11 of 12 HIV-infected children after 11-20 months of zidovudine monotherapy. The codon 41/215 mutant combination was associated with general decline in health status. Patients developing the codon 70 mutation tended to have a better health status. ^
Resumo:
A report from the National Institutes of Health defines a disease biomarker as a “characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention.” Early diagnosis is a crucial factor for incurable disease such as cancer and Alzheimer’s disease (AD). During the last decade researchers have discovered that biochemical changes caused by a disease can be detected considerably earlier as compared to physical manifestations/symptoms. In this dissertation electrochemical detection was utilized as the detection strategy as it offers high sensitivity/specificity, ease of operation, and capability of miniaturization and multiplexed detection. Electrochemical detection of biological analytes is an established field, and has matured at a rapid pace during the last 50 years and adapted itself to advances in micro/nanofabrication procedures. Carbon fiber microelectrodes were utilized as the platform sensor due to their high signal to noise ratio, ease and low-cost of fabrication, biocompatibility, and active carbon surface which allows conjugation with biorecognition moieties. This dissertation specifically focuses on the detection of 3 extensively validated biomarkers for cancer and AD. Firstly, vascular endothelial growth factor (VEGF) a cancer biomarker was detected using a one-step, reagentless immunosensing strategy. The immunosensing strategy allowed a rapid and sensitive means of VEGF detection with a detection limit of about 38 pg/mL with a linear dynamic range of 0–100 pg/mL. Direct detection of AD-related biomarker amyloid beta (Aβ) was achieved by exploiting its inherent electroactivity. The quantification of the ratio of Aβ1-40/42 (or Aβ ratio) has been established as a reliable test to diagnose AD through human clinical trials. Triple barrel carbon fiber microelectrodes were used to simultaneously detect Aβ1-40 and Aβ1-42 in cerebrospinal fluid from rats within a detection range of 100nM to 1.2μM and 400nM to 1μM respectively. In addition, the release of DNA damage/repair biomarker 8-hydroxydeoxyguanine (8-OHdG) under the influence of reactive oxidative stress from single lung endothelial cell was monitored using an activated carbon fiber microelectrode. The sensor was used to test the influence of nicotine, which is one of the most biologically active chemicals present in cigarette smoke and smokeless tobacco.