Solid dispersions: formulation, characterisation, permeability and genomic evaluation


Autoria(s): Khan, Muhammad
Data(s)

01/03/2010

Resumo

Poor water solubility is characterised by low dissolution rate and consequently reduced bioavailability. Formulation of solid dispersion of the drug has attracted considerable interest as a means of improving dissolution process of a range of poorly water soluble drugs. This current study investigates the formulation of solid dispersion for a range of poorly water soluble drugs with varying physicochemical properties including paracetamol, sulphamethoxazole, phenacetin, indomethacin, chloramphenicol, phenylbutazone and succinylsulphathiazole. Solid dispersions were prepared using various drugs to polymer ratios. PEG 8000 was selected as a carrier in the solid dispersions. The study revealed that inclusion of drug within the polymeric matrix, ratio of drug to polymer and physicochemical properties of the drug molecules enhance the dissolution rate. Characterisations of the solid dispersions were performed using DSC, FTIR and SEM. These studies revealed that all seven drugs were present in the amorphous form within the solid dispersions and there was a lack of interaction between the PEG 8000 and drug. Stability studies for solid dispersions showed that all seven drugs studied were unstable at accelerated conditions (40°C±2°C/75%RH±5%RH) whereas, they were found to be stable for 12 months at room conditions. Permeability of indomethacin, phenacetin, phenylbutazone and paracetamol were higher for solid dispersions as compared to drug alone across Caco-2 cell monolayers. From the cell uptake studies it was shown that PEG 8000 enhanced rhodamine123 uptake which suggested that PEG 8000 may increase the permeability of these drugs in solid dispersions. Gene expression profiles analyzing the expression changes in the ABC and solute carrier transporter during permeability studies.ABCA10, ABCB4, ABCC12, SLC12A6, MCT13, SLC22A12 and SLC6A6 gene expression were increased by indomethacin alone whereas solid dispersion of indomethacin resulted in a slight increase in expression. ABCC12 and SAMC gene expression was increased in case of paracetamol alone but slightly increased when exposed to solid dispersion of paracetamol.

Formato

application/pdf

Identificador

http://eprints.aston.ac.uk/10306/1/PhD_final_thesis_PDF.pdf

Khan, Muhammad (2010). Solid dispersions: formulation, characterisation, permeability and genomic evaluation. PhD thesis, Aston University.

Relação

http://eprints.aston.ac.uk/10306/

Tipo

Thesis

NonPeerReviewed