941 resultados para flow field


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In high intensity and high gradient magnetic fields the volumetric force on diamagnetic material, such as water, leads to conditions very similar to microgravity in a terrestrial laboratory. In principle, this opens the possibility to determine material properties of liquid samples without wall contact, even for electrically non-conducting materials. In contrast, AC field levitation is used for conductors, but then terrestrial conditions lead to turbulent flow driven by Lorentz forces. DC field damping of the flow is feasible and indeed practiced to allow property measurements. However, the AC/DC field combination acts preferentially on certain oscillation modes and leads to a shift in the droplet oscillation spectrum.What is the cause? A nonlinear spectral numerical model is presented, to address these problems

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The numerical model for electrically conducting liquid droplets levitated in AC magnetic field is extended to demonstrate various factors affecting the accuracy of material property value measurements. The effects included are the electromagnetic force induced stirring and the resulting turbulence, thermo-capillary convection, and the droplet rotation. The results are validated against available analytical solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In high intensity and high gradient magnetic fields the volumetric force on diamagnetic material, such as water, leads to conditions very similar to microgravity in a terrestrial laboratory. In principle, this opens the possibility to determine material properties of liquid samples without wall contact, even for electrically non-conducting materials. In contrast, AC field levitation is used for conductors, but then terrestrial conditions lead to turbulent flow driven by Lorentz forces. DC field damping of the flow is feasible and indeed practiced to allow property measurements. However, the AC/DC field combination acts preferentially on certain oscillation modes and leads to a shift in the droplet oscillation spectrum.What is the cause? A nonlinear spectral numerical model is presented, to address these problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electromagnetic levitation of liquid metal droplets can be used to measure the properties of highly reactive liquid materials. Two independent numerical models, the commercial COMSOL and the spectral-collocation based free surface code SPHINX, have been applied to solve the transient electromagnetic, fluid flow and thermodynamic equations, which describe the levitated liquid motion and heating processes. The SPHINX model incorporates free surface deformation to accurately model the oscillations that result from the interaction between the electromagnetic and gravity forces, temperature dependent surface tension, magnetically controlled turbulent momentum transport. The models are adapted to incorporate periodic laser heating at the top of the droplet, which is used to measure the thermal conductivity of the material. Novel effects in the levitated droplet of magnetically damped turbulence and nonlinear growth of velocities in high DC magnetic field are analysed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three-dimensional, time-dependent electromagnetic field arising from the precession of the arc centre in a vacuum arc remelting furnace is shown (in a numerical simulation) to affect the fluid flow and heat transfer conditions near the solidification front in the upper part of the ingot.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intense AC magnetic field required to produce levitation in terrestrial conditions, along with the buoyancy and thermo-capillary forces, results in turbulent convective flow within the droplet. The use of a homogenous DC magnetic field allows the convective flow to be damped. However the turbulence properties are affected at the same time, leading to a possibility that the effective turbulent damping is considerably reduced. The MHD modified K-Omega turbulence model allows the investigation of the effect of magnetic field on the turbulence. The model incorporates free surface deformation, the temperature dependent surface tension, turbulent momentum transport, electromagnetic and gravity forces. The model is adapted to incorporate a periodic laser heating at the top of the droplet, which have been used to measure the thermal conductivity of the material by calculating the phase lag between the frequency of the laser heating and the temperature response at the bottom. The numerical simulations show that with the gradual increase of the DC field the fluid flow within the droplet is initially increasing in intensity. Only after a certain threshold magnitude of the field the flow intensity starts to decrease. In order to achieve the flow conditions close to the ‘laminar’ a D.C. magnetic field >4 Tesla is required to measure the thermal conductivity accurately. The reduction in the AC field driven flow in the main body of the drop leads to a noticeable thermo-capillary convection at the edge of the droplet. The uniform vertical DC magnetic field does not stop a translational oscillation of the droplet along the field, which is caused by the variation in total levitation force due to the time-dependent surface deformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The numerical model for electrically conducting liquid droplets levitated in AC magnetic field is applied to demonstrate various factors affecting the accuracy of material property value measurements in microgravity conditions. The included effects are the electromagnetic force induced stirring and the resulting turbulence, the thermo-capillary convection, and the droplet rotation. The results are validated against available analytical solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The yield in organic farming is generally much lower than its potential, which is due to its specificity. The objective of the present study was to quantify the yield spatial variation of wheat and relate it to soil parameters in an organic farm located in the north of the Negev Desert. Soil samples were gathered in a triangular grid at three time intervals. Yields were measured at 73 georeferenced points before the actual harvest. Several thematic maps of soil and yield parameters were produced using geographic information system and geostatistical methods. The strongest spatial correlation was found in the weight of 1000 grains and the weakest was in carbon flow. Temporal relationships were found between soil nitrate concentration, soil water content, and leaf area index. Wheat yield varied from 1.11 to 2.84 Mg ha(-1) and this remarkable variation indicates that the spatial analysis of soil and yield parameters is significant in organic agriculture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Run Time Reconfiguration (RTR) systems, the amount of reconfiguration is considerable when compared to the circuit changes implemented. This is because reconfiguration is not considered as part of the design flow. This paper presents a method for reconfigurable circuit design by modeling the underlying FPGA reconfigurable circuitry and taking it into consideration in the system design. This is demonstrated for an image processing example on the Xilinx Virtex FPGA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two counterpropagating cool and equally dense electron beams are modeled with particle-in-cell simulations. The electron beam filamentation instability is examined in one spatial dimension, which is an approximation for a quasiplanar filament boundary. It is confirmed that the force on the electrons imposed by the electrostatic field, which develops during the nonlinear stage of the instability, oscillates around a mean value that equals the magnetic pressure gradient force. The forces acting on the electrons due to the electrostatic and the magnetic field have a similar strength. The electrostatic field reduces the confining force close to the stable equilibrium of each filament and increases it farther away, limiting the peak density. The confining time-averaged total potential permits an overlap of current filaments with an opposite flow direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research investigated the unconfined flow through dams. The hydraulic conductivity was modeled as spatially random field following lognormal distribution. Results showed that the seepage flow produced from the stochastic solution was smaller than its deterministic value. In addition, the free surface was observed to exit at a point lower than that obtained from the deterministic solution. When the hydraulic conductivity was strongly correlated in the horizontal direction than the vertical direction, the flow through the dam has markedly increased. It is suggested that it may not be necessary to construct a core in dams made from soils that exhibit high degree of variability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper details the numerical analysis of different vaned and vaneless radial inflow turbine stators. Selected results are presented from a test program carried out to determine performance differences between the radial turbines with vaned stators and vaneless volutes under the same operating conditions. A commercial computational fluid dynamics code was used to develop numerical models of each of the turbine configurations, which were validated using the experimental results. From the numerical models, areas of loss generation in the different stators were identified and compared, and the stator losses were quantified. Predictions showed the vaneless turbine stators to incur lower losses than the corresponding vaned stator at matching operating conditions, in line with the trends in measured performance.. Flow conditions at rotor inlet were studied and validated with internal static pressure measurements so as to judge the levels of circumferential nonuniformity for each stator design. In each case, the vaneless volutes were found to deliver a higher level of uniformity in the rotor inlet pressure field. [DOI: 10.1115/1.2988493]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study concerns the spatial allocation of material flows, with emphasis on construction material in the Irish housing sector. It addresses some of the key issues concerning anthropogenic impact on the environment through spatial temporal visualisation of the flow of materials, wastes and emissions at different spatial levels. This is presented in the form of a spatial model, Spatial Allocation of Material Flow Analysis (SAMFA), which enables the simulation of construction material flows and associated energy use. SAMFA parallels the Island Limits project (EPA funded under 2004-SD-MS-22-M2), which aimed to create a material flow analysis of the Irish economy classified by industrial sector. SAMFA further develops this by attempting to establish the material flows at the subnational geographical scale that could be used in the development of local authority (LA) sustainability strategies and spatial planning frameworks by highlighting the cumulative environmental impacts of the development of the built environment. By drawing on the idea of planning support systems, SAMFA also aims to provide a cross-disciplinary, integrative medium for involving stakeholders in strategies for a sustainable built environment and, as such, would help illustrate the sustainability consequences of alternative The pilot run of the model in Kildare has shown that the model can be successfully calibrated and applied to develop alternative material flows and energy-use scenarios at the ED level. This has been demonstrated through the development of an integrated and a business-as-usual scenario, with the former integrating a range of potential material efficiency and energysaving policy options and the latter replicating conditions that best describe the current trend. Their comparison shows that the former is better than the latter in terms of both material and energy use. This report also identifies a number of potential areas of future research and areas of broader application. This includes improving the accuracy of the SAMFA model (e.g. by establishing actual life expectancy of buildings in the Irish context through field surveys) and the extension of the model to other Irish counties. This would establish SAMFA as a valuable predicting and monitoring tool that is capable of integrating national and local spatial planning objectives with actual environmental impacts. Furthermore, should the model prove successful at this level, it then has the potential to transfer the modelling approach to other areas of the built environment, such as commercial development and other key contributors of greenhouse emissions. The ultimate aim is to develop a meta-model for predicting the consequences of consumption patterns at the local scale. This therefore offers the possibility of creating critical links between socio technical systems with the most important challenge of all the limitations of the biophysical environment.