984 resultados para enzyme mechanism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thirteen terrestrial psychrotrophic bacteria from Antarctica were screened for the presence of a thermolabile ribonuclease (RNAase-HL). The enzyme was detected in three isolates of Pseudomonas fluorescens and one isolate of Pseudomonas syringae. It was purified from one P. Fluorescens isolate and the molecular mass of the enzyme as determined by SDS-PAGE was 16 kDa. RNAase-HL exhibited optimum activity around 40 degrees C at pH 7.4. It could hydrolyse Escherichia coli RNA and the synthetic substrates poly(A), poly(C), poly(U) and poly(A-U). Unlike the crude RNAase from mesophilic P. Fluorescens and pure bovine pancreatic RNAase A which were active even at 65 degrees C, RNAase-HL was totally and irreversibly inactivated at 65 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The degradation of the dye, Orange G, was carried out in the presence of H2O2 and Pd-substituted/impregnated CeO2. The effects of pH, initial dye concentration, initial H2O2 concentration, temperature, catalyst loading, and Pd content in the catalyst on the degradation of the dye were investigated. Eight to twelve percent degradation of the dye was obtained in 1 h when the reaction was carried out in the presence of CeO2 or H2O2 or Pd-substituted/impregnated CeO2 while 17% and 97% degradation was obtained when H2O2 was used with Pd-impregnated CeO2 and Pd-substituted CeO2, respectively. This difference clearly indicated that the ionic substitution of Pd played a key role in the degradation of the dye. A mechanism for the reaction was proposed based upon the catalyst structure and the electron transfer processes that take place in the metal ion substituted system in a reducible oxide. The reaction was found to follow first order kinetics and the influence of all the parameters on the degradation kinetics was compared using the rate constants. (c) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The beta-cleavage process in photoexcited ketones of structure RCOCH2X (X = CH2CH3, OCH3, SCH3; R = CH3, Ph) has been studied using the configuration interaction procedure within the framework of MINDO/3. The results explain qualitatively why the beta-cleavage process is faster than the alpha-cleavage process in keto sulfides while in keto ethers the reverse is true.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p-Hydroxyphenylacetate-3-hydroxylase, an inducible enzyme isolated from the soil bacterium Pseudomonas putida, catalyzes the conversion of p-hydroxyphenylacetate to 3,4-dihydroxyphenylacetate. The enzyme requires two protein components: a flavoprotein and a colorless protein referred to as the coupling protein. The flavoprotein alone in the presence of p-hydroxyphenylacetate and substrate analogs catalyzes the wasteful oxidation of NADH with the stoichiometric generation of H2O2. A 1:1 complex of the flavoprotein and coupling protein is required for stoichiometric product formation. Such complex formation also eliminates the nonproductive NADH oxidase activity of the flavoprotein. A new assay measuring the product formation activity of the enzyme was developed using homoprotocatechuate-2,3-dioxygenase, as monitoring the oxidation of NADH was not sufficient to demonstrate enzyme activity. The coupling protein does not seem to have any redox center in it. Thus, this 2-component flavin hydroxylase resembles the other aromatic hydroxylases in that the only redox chromophore present is FAD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have carried out H-1 Magic Angle Spinning (MAS) NMR measurements at various spinning speeds (1-12 kHz) on HNbWO(6)xH(2)O (x = 0 and 1) defect pyrochlore systems. The variation of the line width with the spinning speed in the two systems points towards the presence of motions with different time scales. We conclude that the mechanism of conduction in both the compounds are similar except that the proton hopping in hydrated form is assisted by the water of hydration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purine nucleotide synthesis in Plasmodium falciparum takes place solely by the purine salvage pathway in which preformed purine base(s) are salvaged from the host and acted upon by a battery of enzymes to generate AMP and GMP. Inhibitors of this pathway have a potent effect on the in vitro growth of P. falciparum and are hence, implicated as promising leads for the development of new generation anti-malarials. Here, we describe the mechanism of inhibition of the intraerythrocytic growth of P. falciparum by the purine nucleoside precursor, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR). Our results show that AICAR toxicity is mediated through the erythrocyte in which AICAR is phosphorylated to its nucleotide, ZMP. Further, purine metabolite labeling of the parasitized erythrocytes by H-3]-hypoxanthine, in the presence of AICAR, showed a significant decrease in radioactive counts in adenylate fractions but not in guanylate fractions. The most dramatic effect on parasite growth was observed when erythrocytes pretreated with AICAR were used in culture. Pretreatment of erythrocytes with AICAR led to significant intracellular accumulation of ZMP and these erythrocytes were incapable of supporting parasite growth. These results implicate that in addition to the purine salvage pathway in P. falciparum, AICAR alters the metabolic status of the erythrocytes, which inhibits parasite growth. As AICAR and ZMP are metabolites in the human serum and erythrocytes, our studies reported here throw light on their possible role in disease susceptibility, and also suggests the possibility of AICAR being a potential prophylactic or chemotherapeutic anti-malarial compound. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of a number of perovskite phases M� M�O3-x, as the only forming additive in ZnO ceramics, produces a high nonlinearity index, ?(up to 45), where M� is a multivalent transition?metal ion and M� is an alkaline earth or a rare?earth ion. From this study, the formation parameters crucial to high nonlinearity, such as nonstoichiometry in the as?received ZnO powder, low x values of the additives and fast cooling rate after the sintering, are explainable on the basis of a depletion layer formation at the presintering stage. This is because of the surface states arising out of the chemisorbed oxygen. The depletion layer is retained during sintering as a result of the higher valence state of M� ions, preferentially present at the grain?boundary regions. The fast cooling freezes in the high?temperature concentration of donor?type defects, thereby decreasing the depletion layer width.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of inter-subunit interactions in maintaining optimal catalytic activity in triosephosphate isomerase (TIM) has been probed, using the Plasmodium falciparum enzyme as a model. Examination of subunit interface contacts in the crystal structures suggests that residue 75 (Thr, conserved) and residue 13 (Cys, variable) make the largest number of inter-subunit contacts. The mutants Cys13Asp (C13D) and Cys13Glu (C13E) have been constructed and display significant reduction in catalytic activity when compared with wild-type (WT) enzyme (similar to 7.4-fold decrease in k(cat) for the C13D and similar to 3.3-fold for the C13E mutants). Analytical gel filtration demonstrates that the C13D mutant dissociates at concentrations < 1.25 mu M, whereas the WT and the C13E enzymes retain the dimeric structure. The order of stability of the mutants in the presence of chemical denaturants, like urea and guanidium chloride, is WT > Cys13Glu > Cys13Asp. Irreversible thermal precipitation temperatures follow the same order as well. Modeling studies establish that the Cys13Asp mutation is likely to cause a significantly greater structural perturbation than Cys13Glu. Analysis of sequence and structural data for TIMs from diverse sources suggests that residues 13 and 82 form a pair of proximal sites, in which a limited number of residue pairs may be accommodated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of folding of the small protein barstar in the pre-transition zone at pH 7, 25 degrees C has been characterized using rapid mixing techniques. Earlier studies had established the validity of the three-state U-S reversible arrow U-F reversible arrow N mechanism for folding and unfolding in the presence of guanidine hydrochloride (GdnHCl) at concentrations greater than 2.0 M, where U-S and U-F are the slow-refolding and fast-refolding unfolded forms, respectively, and N is the fully folded form. It is now shown that early intermediates, I-S1 and I-S2 as well as a late native-like intermediate, I-N, are present on the folding pathways of U-S, and an early intermediate I-F1 on the folding pathway of U-F, when bars tar is refolded in concentrations of GdnHCl below 2.0 M. The rates of formation and disappearance of I-N, and the rates of formation of N at three different concentrations of GdnHCl in the pre-transition zone have been measured. The data indicate that in 1.5 M GdnHCl, I-N is not fully populated on the U-S --> I-S1 --> I-N --> N pathway because the rate of its formation is so slow that the U-S reversible arrow U-F reversible arrow N pathway can effectively compete with that pathway. In 1.0 M GdnHCl, the U-S --> I-S1 --> I-N transition is so fast that I-N is fully populated. In 0.6 M GdnHCl, I-N appears not to be fully populated because an alternative folding pathway, U-S --> I-S2 --> N, becomes available for the folding of U-S, in addition to the U-S --> I-S1 --> I-N --> N pathway Measurement of the binding of the hydrophobic dye 1-anilino-8-naphthalenesulphonate (ANS) during folding indicates that ANS binds to two distinct intermediates, I-M1 and I-M2, that form within 2 ms on the U-S --> I-M1 --> I-S1 --> I-N --> N and U-S --> I-M2 --> I-S2 --> N pathways. There is no evidence for the accumulation of intermediates that can bind ANS on the folding pathway of U-F.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A steel ball was slid on aluminium-silicon alloys at different temperatures. After the coefficient of friction had been measured, the surface shear stress was deconvoluted using a two-term model of friction. The ratio of surface shear stress to bulk hardness was calculated as a function of temperature, silicon content and alloying additions. These results are qualitatively similar to those recorded for pre-seizure specimens slid against an En24 disc in a pin-on-disc machine. This similarity, when viewed in the context of the phenomenon of bulk shear, provides a model for seizure of these alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of reduction of iron and chromium oxide from synthetic electric are furnace stainless steelmaking slags has been studied. The activation energy for reduction of FeO depends on the FeO content of the slag and the nature of the product formed. The rate of reduction of both FeO and Cr2O3 is controlled by diffusion of ions in the slag phase. The reduction of Cr2O3 primarily takes place at the slag/Fe-C droplets interface. IS/1352b. (C) 1998 The Institute of Materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P>Transcription activator C employs a unique mechanism to activate mom gene of bacteriophage Mu. The activation process involves, facilitating the recruitment of RNA polymerase (RNAP) by altering the topology of the promoter and enhancing the promoter clearance by reducing the abortive transcription. To understand the basis of this multi-step activation mechanism, we investigated the nature of the physical interaction between C and RNAP during the process. A variety of assays revealed that only DNA-bound C contacts the beta' subunit of RNAP. Consistent to these results, we have also isolated RNAP mutants having mutations in the beta' subunit which were compromised in C-mediated activation. Mutant RNAPs show reduced productive transcription and increased abortive initiation specifically at the C-dependent mom promoter. Positive control (pc) mutants of C, defective in interaction with RNAP, retained the property of recruiting RNAP to the promoter but were unable to enhance promoter clearance. These results strongly suggest that the recruitment of RNAP to the mom promoter does not require physical interaction with C, whereas a contact between the beta' subunit and the activator, and the subsequent allosteric changes in the active site of the enzyme are essential for the enhancement of promoter clearance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nitrate assimilation pathway in Candida utilis, as in other assimilatory organisms, is mediated by two enzymes: nitrate reductase and nitrite reductase. Purified nitrite reductase has been shown to be a heterodimer consisting of 58- and 66-kDa subunits. In the present study, nitrite reductase was found to be capable of utilising both NADH and NADPH as electron donors. FAD, which is an essential coenzyme, stabilised the enzyme during the purification process. The enzyme was modified by cysteine modifiers, and the inactivation could be reversed by thiol reagents. One cysteine was demonstrated to be essential for the enzymatic activity. In vitro, the enzyme was inactivated by ammonium salts, the end product of the path way, proving that the enzyme is assimilatory in function. In vivo, the enzyme was induced by nitrate and repressed by ammonium ions. During induction and repression, the levels of nitrite reductase mRNA, protein, and enzyme activity were modulated together, which indicated that the primary level of regulation of this enzyme was at the transcriptional level. When the enzyme was incubated with ammonium salts in vitro or when the enzyme was assayed in cells grown with the same salts as the source of nitrogen, the residual enzymatic activities were similar. Thus, a study of the in vitro inactivation can give a clue to understanding the mechanism of in vivo regulation of nitrite reductase in Candida utilis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal oxidative polymerization of alpha-methylstyrene (AMS) has been studied at various temperatures(45-70 degrees C) and pressures (50-400 psi). Due to its high electron dense double bond, it undergoes thermal oxidative polymerization even at low temperatures fairly easily. The major products are poly(alpha-methylstyrene peroxide) (PMSP), and its decomposition products are acetophenone and formaldehyde. Above 45 degrees C the rate of polymerization increases sharply at a particular instant showing an ''autoacceleration'' with the formation of a knee point. The ''autoacceleration'' is supported from the fact that the plot, of R-p vs T shows a rapid rise, and the plot of ln R-p vs 1/T is non-Arrhenius. The occurrence of autoacceleration is explained on the basis of acetophenone-induced cleavage of PMSP during polymerization, generating more initiating alkoxy radicals, which subsequently leads to the rapid rise in the rate of polymerization. The mechanism of autoacceleration is supported by the change in. order, activation energy, and activation volume before and after the knee point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Res subunits of the type III restriction-modification enzymes share a statistically significant amino acid sequence similarity with several RNA and DNA helicases of the so-called DEAD family. It was postulated that in type III restriction enzymes a DNA helicase activity may be required for local unwinding at the cleavage site. The members of this family share seven conserved motifs, all of which are found in the Res subunit of the type III restriction enzymes. To determine the contribution, if any, of these motifs in DNA cleavage by EcoPI, a type III restriction enzyme, we have made changes in motifs I and II. While mutations in motif I (GTGKT) clearly affected ATP hydrolysis and resulted in loss of DNA cleavage activity, mutation in motif II (DEPH) significantly decreased ATP hydrolysis but had no effect on DNA cleavage. The double mutant R.EcoPIK90R-H229K showed no significant ATPase or DNA restriction activity though ATP binding was not affected. These results imply that there are at least two ATPase reaction centres in EcoPI restriction enzyme. Motif I appears to be involved in coupling DNA restriction to ATP hydrolysis. Our results indicate that EcoPI restriction enzyme does not have a strand separation activity. We suggest that these motifs play a role in the ATP-dependent translocation that has been proposed to occur in the type III restriction enzymes. (C) 1997 Academic Press Limited.