902 resultados para discrete and continuum models
Resumo:
Interviews with more than 40 leaders in the Boston area health care industry have identified a range of broadly-felt critical problems. This document synthesizes these problems and places them in the context of work and family issues implicit in the organization of health care workplaces. It concludes with questions about possible ways to address such issues. The defining circumstance for the health care industry nationally as well as regionally at present is an extraordinary reorganization, not yet fully negotiated, in the provision and financing of health care. Hoped-for controls on increased costs of medical care – specifically the widespread replacement of indemnity insurance by market-based managed care and business models of operation--have fallen far short of their promise. Pressures to limit expenditures have produced dispiriting conditions for the entire healthcare workforce, from technicians and aides to nurses and physicians. Under such strains, relations between managers and workers providing care are uneasy, ranging from determined efforts to maintain respectful cooperation to adversarial negotiation. Taken together, the interviews identify five key issues affecting a broad cross-section of occupational groups, albeit in different ways: Staffing shortages of various kinds throughout the health care workforce create problems for managers and workers and also for the quality of patient care. Long work hours and inflexible schedules place pressure on virtually every part of the healthcare workforce, including physicians. Degraded and unsupportive working conditions, often the result of workplace "deskilling" and "speed up," undercut previous modes of clinical practice. Lack of opportunities for training and advancement exacerbate workforce problems in an industry where occupational categories and terms of work are in a constant state of flux. Professional and employee voices are insufficiently heard in conditions of rapid institutional reorganization and consolidation. Interviewees describe multiple impacts of these issues--on the operation of health care workplaces, on the well being of the health care workforce, and on the quality of patient care. Also apparent in the interviews, but not clearly named and defined, is the impact of these issues on the ability of workers to attend well to the needs of their families--and the reciprocal impact of workers' family tensions on workplace performance. In other words, the same things that affect patient care also affect families, and vice versa. Some workers describe feeling both guilty about raising their own family issues when their patients' needs are at stake, and resentful about the exploitation of these feelings by administrators making workplace policy. The different institutions making up the health care system have responded to their most pressing issues with a variety of specific stratagems but few that address the complexities connecting relations between work and family. The MIT Workplace Center proposes a collaborative exploration of next steps to probe these complications and to identify possible locations within the health care system for workplace experimentation with outcomes benefiting all parties.
Resumo:
Synechocystis PCC 6803 is a photosynthetic bacterium that has the potential to make bioproducts from carbon dioxide and light. Biochemical production from photosynthetic organisms is attractive because it replaces the typical bioprocessing steps of crop growth, milling, and fermentation, with a one-step photosynthetic process. However, low yields and slow growth rates limit the economic potential of such endeavors. Rational metabolic engineering methods are hindered by limited cellular knowledge and inadequate models of Synechocystis. Instead, inverse metabolic engineering, a scheme based on combinatorial gene searches which does not require detailed cellular models, but can exploit sequence data and existing molecular biological techniques, was used to find genes that (1) improve the production of the biopolymer poly-3-hydroxybutyrate (PHB) and (2) increase the growth rate. A fluorescence activated cell sorting assay was developed to screen for high PHB producing clones. Separately, serial sub-culturing was used to select clones that improve growth rate. Novel gene knock-outs were identified that increase PHB production and others that increase the specific growth rate. These improvements make this system more attractive for industrial use and demonstrate the power of inverse metabolic engineering to identify novel phenotype-associated genes in poorly understood systems.
Resumo:
Much of the self-image of the Western university hangs on the idea that research and teaching are intimately connected. The central axiom here is that research and teaching are mutually supportive of each other. An institution lacking such a set of relationships between research and teaching falls short of what it means to be a university. This set of beliefs raises certain questions: Is it the case that the presence of such a mutually supportive set of relationships between research and teaching is a necessary condition of the fulfilment of the idea of the university? (A conceptual question). And is it true that, in practice today, such a mutually supportive set of relationships between research and teaching characterises universities? (An empirical question). In my talk, I want to explore these matters in a critical vein. I shall suggest that: a) In practice today, such a mutually supportive set of relationships between research and teaching is in jeopardy. Far from supporting each other, very often research and teaching contend against each other. Research and teaching are becoming two separate ideologies, with their own interest structures. b) Historically, the supposed tight link between research and teaching is both of recent origin and far from universally achieved in universities. Institutional separateness between research and teaching is and has been evident, both across institutions and even across departments in the same institution. c) Conceptually, research and teaching are different activities: each is complex and neither is reducible to the other. In theory, therefore, research and teaching may be said to constitute a holy alliance but in practice, we see more of an unholy alliance. If, then, in an ideal world, a positive relationship between research and teaching is still a worthwhile goal, how might it be construed and worked for? Seeing research and teaching as two discrete and unified sets of activity is now inadequate. Much better is a construal of research and teaching as themselves complexes, as intermingling pools of activity helping to form the liquid university that is emerging today. On this view, research and teaching are fluid spaces, ever on the move, taking up new shapes, and themselves dividing and reforming, as the university reworks its own destiny in modern society. On such a perspective, working out a productive relationship between research and teaching is a complex project. This is an alliance that is neither holy nor unholy. It is an uneasy alliance, with temporary accommodations and continuous new possibilities
Resumo:
This lab follows the lectures 'System Design: http://www.edshare.soton.ac.uk/9653/ and http://www.edshare.soton.ac.uk/6280/ . Students use Visual Paradigm for UML to build Activity and Sequence models through project examples: Library, Plant Nursery and a Health Spa
Resumo:
Impulsivity has been linked to three main factors: performing without direct involvement of the frontal lobe functions, an increase in the speed of response, and the acquisition of immediate gratification. This behavioral inhibition deficit involves a variety of behaviors including aspects of hyperexcitability, behavioral disinhibition and higher order decision making. Although by tradition, the definition of this executive function has been conceptualized from a psychopathological view, currently, the wide variety of neuropsychological, developmental and animal models assessment techniques encourage us to establish dialogues that integrate the knowledge of these theoretical perspectives for the interpretation and understanding of impulsivity.
Resumo:
El presente trabajo se enfoca en el análisis de las acciones de Ecopetrol, empresa representativa del mercado de Extracción de Petróleo y Gas natural en Colombia (SP&G), durante el periodo, del 22 de mayo de 2012 al 30 de agosto de 2013. Durante este espacio de tiempo la acción sufrió una serie de variaciones en su precio las cuales se relacionaban a la nueva emisión de acciones que realizo la Compañía. Debido a este cambio en el comportamiento del activo se generaron una serie de interrogantes sobre, (i) la reacción del mercado ante diferentes sucesos ocurridos dentro de las firmas y en su entorno (ii) la capacidad de los modelos financieros de predecir y entender las posibles reacciones observadas de los activos (entendidos como deuda). Durante el desarrollo del presente trabajo se estudiará la pertinencia del mismo, en línea con los objetivos y desarrollos de la Escuela de Administración de la Universidad del Rosario. Puntualmente en temas de Perdurabilidad direccionados a la línea de Gerencia. Donde el entendimiento de la deuda como parte del funcionamiento actual y como variable determinante para el comportamiento futuro de las organizaciones tiene especial importancia. Una vez se clarifica la relación entre el presente trabajo y la Universidad, se desarrollan diferentes conceptos y teorías financieras que han permitido conocer y estudiar de manera más específica el mercado, con el objetivo de reducir los riesgos de las inversiones realizadas. Éste análisis se desarrolla en dos partes: (i) modelos de tiempo discreto y (ii) modelos de tiempo continúo. Una vez se tiene mayor claridad sobre los modelos estudiados hasta el momento se realiza el respectivo análisis de los datos mediante modelos de caos y análisis recurrente los cuales nos permiten entender que las acciones se comportan de manera caótica pero que establecen ciertas relaciones entre los precios actuales y los históricos, desarrollando comportamientos definidos entre los precios, las cantidades, el entorno macroeconómico y la organización. De otra parte, se realiza una descripción del mercado de petróleo en Colombia y se estudia a Ecopetrol como empresa y eje principal del mercado descrito en el país. La compañía Ecopetrol es representativa debido a que es uno de los mayores aportantes fiscales del país, pues sus ingresos se desprenden de bienes que se encuentran en el subsuelo por lo que la renta petrolera incluye impuestos a la producción transformación y consumo (Ecopetrol, 2003). Por último, se presentan los resultados del trabajo, así como el análisis que da lugar para presentar ciertas recomendaciones a partir de lo observado.
Resumo:
We study the role of natural resource windfalls in explaining the efficiency of public expenditures. Using a rich dataset of expenditures and public good provision for 1,836 municipalities in Peru for period 2001-2010, we estimate a non-monotonic relationship between the efficiency of public good provision and the level of natural resource transfers. Local governments that were extremely favored by the boom of mineral prices were more efficient in using fiscal windfalls whereas those benefited with modest transfers were more inefficient. These results can be explained by the increase in political competition associated with the boom. However, the fact that increases in efficiency were related to reductions in public good provision casts doubts about the beneficial effects of political competition in promoting efficiency.
Resumo:
The problem of stability analysis for a class of neutral systems with mixed time-varying neutral, discrete and distributed delays and nonlinear parameter perturbations is addressed. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor model transformation, the Leibniz-Newton formula, some free-weighting matrices, and a suitable change of variables, new sufficient conditions are established for the stability of the considered system, which are neutral-delay-dependent, discrete-delay-range dependent, and distributeddelay-dependent. The conditions are presented in terms of linear matrix inequalities (LMIs) and can be efficiently solved using convex programming techniques. Two numerical examples are given to illustrate the efficiency of the proposed method
Resumo:
Conservation planning requires identifying pertinent habitat factors and locating geographic locations where land management may improve habitat conditions for high priority species. I derived habitat models and mapped predicted abundance for the Golden-winged Warbler (Vermivora chrysoptera), a species of high conservation concern, using bird counts, environmental variables, and hierarchical models applied at multiple spatial scales. My aim was to understand habitat associations at multiple spatial scales and create a predictive abundance map for purposes of conservation planning for the Golden-winged Warbler. My models indicated a substantial influence of landscape conditions, including strong positive associations with total forest composition within the landscape. However, many of the associations I observed were counter to reported associations at finer spatial extents; for instance, I found Golden-winged Warblers negatively associated with several measures of edge habitat. No single spatial scale dominated, indicating that this species is responding to factors at multiple spatial scales. I found Golden-winged Warbler abundance was negatively related with Blue-winged Warbler (Vermivora cyanoptera) abundance. I also observed a north-south spatial trend suggestive of a regional climate effect that was not previously noted for this species. The map of predicted abundance indicated a large area of concentrated abundance in west-central Wisconsin, with smaller areas of high abundance along the northern periphery of the Prairie Hardwood Transition. This map of predicted abundance compared favorably with independent evaluation data sets and can thus be used to inform regional planning efforts devoted to conserving this species.
Resumo:
The and RT0 finite element schemes are among the most promising low order elements for use in unstructured mesh marine and lake models. They are both free of spurious elevation modes, have good dispersive properties and have a relatively low computational cost. In this paper, we derive both finite element schemes in the same unified framework and discuss their respective qualities in terms of conservation, consistency, propagation factor and convergence rate. We also highlight the impact that the local variables placement can have on the model solution. The main conclusion that we can draw is that the choice between elements is highly application dependent. We suggest that the element is better suited to purely hydrodynamical applications while the RT0 element might perform better for hydrological applications that require scalar transport calculations.
Resumo:
Finite computing resources limit the spatial resolution of state-of-the-art global climate simulations to hundreds of kilometres. In neither the atmosphere nor the ocean are small-scale processes such as convection, clouds and ocean eddies properly represented. Climate simulations are known to depend, sometimes quite strongly, on the resulting bulk-formula representation of unresolved processes. Stochastic physics schemes within weather and climate models have the potential to represent the dynamical effects of unresolved scales in ways which conventional bulk-formula representations are incapable of so doing. The application of stochastic physics to climate modelling is a rapidly advancing, important and innovative topic. The latest research findings are gathered together in the Theme Issue for which this paper serves as the introduction.
Resumo:
Resumo:
Robust responses and links between the tropical energy and water cycles are investigated using multiple datasets and climate models over the period 1979-2006. Atmospheric moisture and net radiative cooling provide powerful constraints upon future changes in precipitation. While moisture amount is robustly linked with surface temperature, the response of atmospheric net radiative cooling, derived from satellite data, is less coherent. Precipitation trends and relationships with surface temperature are highly sensitive to the data product and the time-period considered. Data from the Special Sensor Microwave Imager (SSM/I) produces the strongest trends in precipitation and response to warming of all the datasets considered. The tendency for moist regions to become wetter while dry regions become drier in response to warming is captured by both observations and models. Citation: John, V. O., R. P. Allan, and B. J. Soden (2009), How robust are observed and simulated precipitation responses to tropical ocean warming?
Resumo:
A modelling study has been undertaken to assess the likely impacts of climate change on water quality across the UK. A range of climate change scenarios have been used to generate future precipitation, evaporation and temperature time series at a range of catchments across the UK. These time series have then been used to drive the Integrated Catchment (INCA) suite of flow, water quality and ecological models to simulate flow, nitrate, ammonia, total and soluble reactive phosphorus, sediments, macrophytes and epiphytes in the Rivers Tamar, Lugg, Tame, Kennet, Tweed and Lambourn. A wide range of responses have been obtained with impacts varying depending on river character, catchment location, flow regime, type of scenario and the time into the future. Essentially upland reaches of river will respond differently to lowland reaches of river, and the responses will vary depending on the water quality parameter of interest.
Resumo:
The prediction of climate variability and change requires the use of a range of simulation models. Multiple climate model simulations are needed to sample the inherent uncertainties in seasonal to centennial prediction. Because climate models are computationally expensive, there is a tradeoff between complexity, spatial resolution, simulation length, and ensemble size. The methods used to assess climate impacts are examined in the context of this trade-off. An emphasis on complexity allows simulation of coupled mechanisms, such as the carbon cycle and feedbacks between agricultural land management and climate. In addition to improving skill, greater spatial resolution increases relevance to regional planning. Greater ensemble size improves the sampling of probabilities. Research from major international projects is used to show the importance of synergistic research efforts. The primary climate impact examined is crop yield, although many of the issues discussed are relevant to hydrology and health modeling. Methods used to bridge the scale gap between climate and crop models are reviewed. Recent advances include large-area crop modeling, quantification of uncertainty in crop yield, and fully integrated crop–climate modeling. The implications of trends in computer power, including supercomputers, are also discussed.