892 resultados para crystal purity
Resumo:
The title compound, (thiosaccharine disulfide), bis[1,10dioxide-2,3-dihidro-1,2-benzoisothiazol]disulfide, (tsac)2 has been synthesized and fully characterized by UV–Visible, IR, Raman, 1H and 13C NMR spectroscopy elemental analysis and structural X-ray crystallography. A DFT theoretical study has been performed and good agreement between experimental and theoretical values of structural parameters and vibration frequencies have been achieved.
Resumo:
Calcium tantalite (CaTa2O6) single crystal fibers were obtained by the laser-heated pedestal growth method (LHPG). At room temperature, this material can present three polymorphic modifications. The rapid crystallization inherent to the LHPG method produced samples within the Pm3 space group, with some chemical disorder. In order to check for polymorphic-induced transformations, the CaTa2O6 fibers have been submitted to different thermal treatments and investigated by micro-Raman spectroscopy. For short annealing times (15 min) at 1200 °C, the cubic modification was maintained, though with an improved crystalline quality, as evidenced by the enhanced inelastic scattered intensity (by ca. 250%) and narrowing of Raman bands. The polarized Raman spectra respected very well the predicted symmetries and the selection rules for this cubic modification. On the other hand, long annealing times (24 h) at 1200 °C led to a complete (irreversible) polymorphic transformation. The Raman bands became still more intense (ca. 15 times larger than for the as-grown fibers), narrower, and several new modes appeared. Also, the spectra became unpolarized, demonstrating a polycrystalline nature of the transformed crystals. The observed Raman modes could be fully assigned to an orthorhombic modification of CaTa2O6 belonging to the Pnma space group.
Resumo:
The conversion coefficients from air kerma to ICRU operational dose equivalent quantities for ENEA’s realization of the X-radiation qualities L10-L35 of the ISO “Low Air Kerma rate” series (L), N10-N40 of the ISO “Narrow spectrum” series (N) and H10-H60 of the ISO “High Air-kerma rate” (H) series and two beams at 5 kV and 7.5 kV were determined by utilising X-ray spectrum measurements. The pulse-height spectra were measured using a planar high-purity germanium spectrometer (HPGe) and unfolded to fluence spectra using a stripping procedure then validate with using Monte Carlo generated data of the spectrometer response. HPGe portable detector has a diameter of 8.5 mm and a thickness of 5 mm. The entrance window of the crystal is collimated by a 0.5 mm thick Aluminum ring to an open diameter of 6.5 mm. The crystal is mounted at a distance of 5 mm from the Berillium window (thickness 25.4 micron). The Monte Carlo method (MCNP-4C) was used to calculate the efficiency, escape and Compton curves of a planar high-purity germanium detector (HPGe) in the 5-60 keV energy. These curves were used for the determination of photon spectra produced by the X-ray machine SEIFERT ISOVOLT 160 kV in order to allow a precise characterization of photon beams in the low energy range, according to the ISO 4037. The detector was modelled with the MCNP computer code and validated with experimental data. To verify the measuring and the stripping procedure, the first and the second half-value layers and the air kerma rate were calculated from the counts spectra and compared with the values measured using an a free-air ionization chamber. For each radiation quality, the spectrum was characterized by the parameters given in ISO 4037-1. The conversion coefficients from the air kerma to the ICRU operational quantities Hp(10), Hp(0.07), H’(0.07) and H*(10) were calculated using monoenergetic conversion coefficients. The results are discussed with respect to ISO 4037-4, and compared with published results for low-energy X-ray spectra. The main motivation for this work was the lack of a treatment of the low photon energy region (from a few keV up to about 60 keV).
Resumo:
FIR spectroscopy is an alternative way of collecting spectra of many inorganic pigments and corrosion products found on art objects, which is not normally observed in the MIR region. Most FIR spectra are traditionally collected in transmission mode but as a real novelty it is now also possible to record FIR spectra in ATR (Attenuated Total Reflectance) mode. In FIR transmission we employ polyethylene (PE) for preparation of pellets by embedding the sample in PE. Unfortunately, the preparation requires heating of the PE in order to produces at transparent pellet. This will affect compounds with low melting points, especially those with structurally incorporated water. Another option in FIR transmission is the use of thin films. We test the use of polyethylene thin film (PETF), both commercial and laboratory-made PETF. ATR collection of samples is possible in both the MIR and FIR region on solid, powdery or liquid samples. Changing from the MIR to the FIR region is easy as it simply requires the change of detector and beamsplitter (which can be performed within a few minutes). No preparation of the sample is necessary, which is a huge advantage over the PE transmission method. The most obvious difference, when comparing transmission with ATR, is the distortion of band shape (which appears asymmetrical in the lower wavenumber region) and intensity differences. However, the biggest difference can be the shift of strong absorbing bands moving to lower wavenumbers in ATR mode. The sometimes huge band shift necessitates the collection of standard library spectra in both FIR transmission and ATR modes, provided these two methods of collecting are to be employed for analyses of unknown samples. Standard samples of 150 pigment and corrosion compounds are thus collected in both FIR transmission and ATR mode in order to build up a digital library of spectra for comparison with unknown samples. XRD, XRF and Raman spectroscopy assists us in confirming the purity or impurity of our standard samples. 24 didactic test tables, with known pigment and binder painted on the surface of a limestone tablet, are used for testing the established library and different ways of collecting in ATR and transmission mode. In ATR, micro samples are scratched from the surface and examined in both the MIR and FIR region. Additionally, direct surface contact of the didactic tablets with the ATR crystal are tested together with water enhanced surface contact. In FIR transmission we compare the powder from our test tablet on the laboratory PETF and embedded in PE. We also compare the PE pellets collected using a 4x beam condenser, focusing the IR beam area from 8 mm to 2 mm. A few samples collected from a mural painting in a Nepalese temple, corrosion products collected from archaeological Chinese bronze objects and samples from a mural paintings in an Italian abbey, are examined by ATR or transmission spectroscopy.
Resumo:
During this work, done mainly in the laboratories of the department of Industrial Chemistry and Materials of the University of Bologna but also in the laboratories of the Carnegie Mellon University in collaboration with prof. K. Matyjaszewski and at the university of Zaragoza in collaboration with prof. J. Barberá, was focused mainly on the synthesis and characterization of new functional polymeric materials. In the past years our group gained a deep knowledge about the photomodulation of azobenzene containing polymers. The aim of this thesis is to push forward the performances of these materials by the synthesis of well defined materials, in which, by a precise control over the macromolecular structures, better or even new functionality can be delivered to the synthesized material. For this purpose, besides the rich photochemistry of azoaromatic polymers that brings to the application, the control offered from the recent techniques of controlled radical polymerization, ATRP over all, gives an enormous range of opportunity for the developing of a new generation of functional materials whose properties are determinate not only by the chemical nature of the functional center (e.g. azoaromatic chromophore) but are tuned and even amplified by a synergy with the whole macromolecular structure. Old materials in new structures. In this contest the work of this thesis was focused mainly on the synthesis and characterization of well defined azoaromatic polymers in order to establish, for the first time, precise structure-properties correlation. In fact a series of well defined different azopolymers, chiral and achiral, with different molecular weight and highly monodisperse were synthesized and their properties were studied, in terms of photoexpansion and photomodulation of chirality. We were then able to study the influence of the macromolecular structure in terms of molecular weight and ramification on the studied properties. The huge amount of possibility offered by the tailoring of the macromolecular structure were exploited for the synthesis of new cholesteric photochromic polymers that can be used as a smart label for the certification of the thermal history of any thermosensitive product. Finally the ATRP synthesis allowed us to synthesize a total new class of material, named molecular brushes: a flat surface covered with an ultra thin layer of polymeric chain covalently bond onto the surface from one end. This new class of materials is of extreme interest as they offer the possibility to tune and manage the interaction of the surface with the environment. In this contest we synthesized both azoaromatic surfaces, growing directly the polymer from the surface, and mixed brushes: surfaces covered with incompatible macromolecules. Both type of surfaces acts as “smart” surfaces: the first it is able to move the orientation of a LC cell by simply photomodulation and, thanks to the robustness of the covalent bond, can be used as a command surface overcoming all the limitation due to the dewetting of the active layer. The second type of surface, functionalized by a grafting-to method, can self assemble the topmost layer responding to changed environmental conditions, exposing different functionality according to different environment.
Resumo:
Liquid Crystal Polymer Brushes and their Application as Alignment Layers in Liquid Crystal Cells Polymer brushes with liquid crystalline (LC) side chains were synthesized on planar glass substrates and their nematic textures were investigated. The LC polymers consist of an acrylate or a methacrylate main chain and a phenyl benzoate group as the mesogenic unit which is connected to the main chain via a flexible alkyl spacer composed of six CH2 units. The preparation of the LC polymer brushes was carried out according to the grafting from technique: polymerization is carried out from azo-initiators that have been previously self-assembled on the substrate. LC polymer brushes with a thickness from a few nm to 230 nm were synthesized by varying the monomer concentration and the polymerization time. The LC polymer brushes were thick enough to allow for direct observation of the nematic textures with a polarizing microscope. The LC polymer brushes grown on untreated glass substrates exhibited irregular textures (polydomains). The domain size is in the range of some micrometers and depends only weakly on the brush thickness. The investigations on the texture-temperature relationship of the LC brushes revealed that the brushes exhibit a surface memory effect, that is, the identical texture reappears after the LC brush sample has experienced a thermal isotropization or a solvent treatment, at which the nematic LC state has been completely destroyed. The surface memory effect is attributed to a strong anchoring of the orientation of the mesogenic units to heterogeneities at the substrate surface. The exact nature of the surface heterogeneities is unknown. The effect was observed for the LC brushes swollen with low molecular weight nematic molecules, as well. Rubbing the glass substrate with a piece of velvet cloth prior to the surface modification with the initiator and the brush growth gives rise to the formation of homogenous alignment of the mesogenic units in the LC polymer side chains. Monodomain textures were obtained for these LC brushes. The mechanism for the homogeneous alignment is based on the transfer of Nylon fibers during the rubbing process. A surfactant was mixed with the azo-initiator in modifying rubbed substrates for subsequent brush generation. Such brushes exhibited biaxial optical properties. Hybrid LC cells made from a substrate modified with biaxial brushes and a rubbed glass substrate show an orientation with a tilt angle of a = 15.6 . This work shows that LC brushes grown on rubbed surfaces fulfill the important criteria for alignment layers: the formation of macroscopic monodomains. First results indicate that by diluting the brush with molecules which are also covalently bound to the surface but induce a different orientation, a system is obtained in which the two conflicting alignment mechanisms can be used to generate a tilted alignment. In order to allow for an application of the alignment layers into a potential product, subsequent work should focus on the questions how easy and in which range the tilt angle can be controlled.
Resumo:
Seit Frühjahr 2004 wird der Crystal Ball-Detektor am Photonenstrahl des Mainzer Mikrotrons für Koinzidenzexperimente zur Untersuchung der Struktur der Nukleonen genutzt. Aufbau und Inbetriebnahme des Kalorimeters, insbesondere der neuen Detektorelektronik, bilden einen Schwerpunkt dieser Arbeit. Komponenten wurden neu konstruiert oder auf ihre Verwendbarkeit geprüft und nögenfalls modifiziert. Nach erfolgreichem Abschluss der Aufbauphase wurden Experimente zur Produktion von $pi$- und $eta$-Mesonen am Proton mit mehr als 2500 Stunden Strahlbetrieb durchgeführt. Den zweiten Schwerpunkt der Dissertation bildet die erstmalige Messung der Helizitätsasymmetrie I$^odot$ in der Photoproduktion zweier neutraler Pionen. Zum Verstädnis des Anregungsspektrums der Nukleonen müssen Experimente mit polarisierten Photonen und/oder polarisierten Targets durchgeführt werden. Da Modelle trotz unterschiedlicher Annahmen unpolarisiert gemessene Größen vergleichbar gut reproduzieren, ist die Bestimmung der auf Modellunterschiede empfindlichen Polarisationsobservablen unumgäglich. Im Gegensatz zur Einpionproduktion tritt in der Zweipionproduktion eine Einfachpolarisationsobservable auf, die mit zirkular polarisierten Photonen am unpolarisierten Proton gemessen werden kann. Diese wurde in der Reaktion $gamma$ p $rightarrow$ p $pi^0$ $pi^0$ und in $gamma$ p $rightarrow$ p $pi^+$ $pi^-$ energie- und winkelabhägig bestimmt. Die Ergebnisse weichen stark von den Modellvorhersagen ab.
Resumo:
This work of thesis involves various aspects of crystal engineering. Chapter 1 focuses on crystals containing crown ether complexes. Aspects such as the possibility of preparing these materials by non-solution methods, i.e. by direct reaction of the solid components, thermal behavior and also isomorphism and interconversion between hydrates are taken into account. In chapter 2 a study is presented aimed to understanding the relationship between hydrogen bonding capability and shape of the building blocks chosen to construct crystals. The focus is on the control exerted by shape on the organization of sandwich cations such as cobalticinium, decamethylcobalticinium and bisbenzenchromium(I) and on the aggregation of monoanions all containing carboxylic and carboxylate groups, into 0-D, 1-D, 2-D and 3-D networks. Reactions conducted in multi-component molecular assemblies or co-crystals have been recognized as a way to control reactivity in the solid state. The [2+2] photodimerization of olefins is a successful demonstration of how templated solid state synthesis can efficiently synthesize unique materials with remarkable stereoselectivity and under environment-friendly conditions. A demonstration of this synthetic strategy is given in chapter 3. The combination of various types of intermolecular linkages, leading to formation of high order aggregation and crystalline materials or to a random aggregation resulting in an amorphous precipitate, may not go to completeness. In such rare cases an aggregation process intermediate between crystalline and amorphous materials is observed, resulting in the formation of a gel, i.e. a viscoelastic solid-like or liquid-like material. In chapter 4 design of new Low Molecular Weight Gelators is presented. Aspects such as the relationships between molecular structure, crystal packing and gelation properties and the application of this kind of gels as a medium for crystal growth of organic molecules, such as APIs, are also discussed.
Resumo:
Liquid crystals (LCs) are an interesting class of soft condensed matter systems characterized by an unusual combination of fluidity and long-range order, mainly known for their applications in displays (LCDs). However, the interest in LC continues to grow pushed by their application in new technologies in medicine, optical imaging, micro and nano technologies etc. In LCDs uniaxial alignment of LCs is mainly achieved by a rubbing process. During this treatment, the surfaces of polymer coated display substrates are rubbed in one direction by a rotating cylinder covered with a rubbing cloth. Basically, LC alignment involves two possible aligning directions: uniaxial planar (homogeneous) and vertical (homeotropic) to the display substrate. An interesting unresolved question concerning LCs regards the origin of their alignment on rubbed surfaces, and in particular on the polymeric ones used in the display industry. Most studies have shown that LCs on the surface of the rubbed polymer film layer are lying parallel to the rubbing direction. In these systems, micrometric grooves are generated on the film surface along the rubbing direction and also the polymer chains are stretched in this direction. Both the parallel aligned microgrooves and the polymer chains at the film surface may play a role in the LC alignment and it is not easy to quantify the effect of each contribution. The work described in this thesis is an attempt to find new microscopic evidences on the origin of LC alignment on polymeric surfaces through molecular dynamics (MD) simulations, which allow the investigation of the phenomenon with atomic detail. The importance of the arrangement of the polymeric chains in LCs alignment was studied by performing MD simulations of a thin film of a typical nematic LC, 4-cyano-4’-pentylbiphenyl (5CB), in contact with two different polymers: poly(methyl methacrylate)(PMMA) and polystyrene (PS). At least four factors are believed to influence the LC alignment: 1. the interactions of LCs with the backbone vinyl chains; 2. the interactions of LCs with the oriented side groups; 3. the anisotropic interactions of LCs with nanometric grooves; 4. the presence of static surface charges. Here we exclude the effect of microgrooves and of static surface charges from our virtual experiment, by using flat and neutral polymer surfaces, with the aim of isolating the chemical driving factors influencing the alignment of LC phases on polymeric surfaces.
Resumo:
The heavy fermion compound UNi2Al3 exhibits the coexistence of superconductivity and magnetic order at low temperatures, stimulating speculations about possible exotic Cooper-pairing interaction in this superconductor. However, the preparation of good quality bulk single crystals of UNi2Al3 has proven to be a non-trivial task due to metallurgical problems, which result in the formation of an UAl2 impurity phase and hence a strongly reduced sample purity. The present work concentrates on the preparation, characterization and electronic properties investigation of UNi2Al3 single crystalline thin film samples. The preparation of thin films was accomplished in a molecular beam epitaxy (MBE) system. (100)-oriented epitaxial thin films of UNi2Al3 were grown on single crystalline YAlO3 substrates cut in (010)- or (112)-direction. The high crystallographic quality of the samples was proved by several characterisation methods, such as X-ray analysis, RHEED and TEM. To study the magnetic structure of epitaxial thin films resonant magnetic x-ray scattering was employed. The magnetic order of thin the film samples, the formation of magnetic domains with different moment directions, and the magnetic correlation length were discussed. The electronic properties of the UNi2Al3 thin films in the normal and superconducting states were investigated by means of transport measurements. A pronounced anisotropy of the temperature dependent resistivity ρ(T) was observed. Moreover, it was found that the temperature of the resistive superconducting transition depends on the current direction, providing evidence for multiband superconductivity in UNi2Al3. The initial slope of the upper critical field H′c2(T) of the thin film samples suggests an unconventional spin-singlet superconducting state, as opposed to bulk single crystal data. To probe the superconducting gap of UNi2Al3 directly by means of tunnelling spectroscopy many planar junctions of different design employing different techniques were prepared. Despite the tunneling regime of the junctions, no features of the superconducting density of state of UNi2Al3 were ever observed. It is assumed that the absence of UNi2Al3 gap features in the tunneling spectra was caused by imperfections of the tunnelling contacts. The superconductivity of UNi2Al3 was probably suppressed just in a degraded surface layer, resulting in tunneling into non superconducting UNi2Al3. However, alternative explanations such as intrinsic pair breaking effects at the interface to the barrier are also possible.
Resumo:
We have performed Monte Carlo and molecular dynamics simulations of suspensions of monodisperse, hard ellipsoids of revolution. Hard-particle models play a key role in statistical mechanics. They are conceptually and computationally simple, and they offer insight into systems in which particle shape is important, including atomic, molecular, colloidal, and granular systems. In the high density phase diagram of prolate hard ellipsoids we have found a new crystal, which is more stable than the stretched FCC structure proposed previously . The new phase, SM2, has a simple monoclinic unit cell containing a basis of two ellipsoids with unequal orientations. The angle of inclination is very soft for length-to-width (aspect) ratio l/w=3, while the other angles are not. A symmetric state of the unit cell exists, related to the densest-known packings of ellipsoids; it is not always the stable one. Our results remove the stretched FCC structure for aspect ratio l/w=3 from the phase diagram of hard, uni-axial ellipsoids. We provide evidence that this holds between aspect ratios 3 and 6, and possibly beyond. Finally, ellipsoids in SM2 at l/w=1.55 exhibit end-over-end flipping, warranting studies of the cross-over to where this dynamics is not possible. Secondly, we studied the dynamics of nearly spherical ellipsoids. In equilibrium, they show a first-order transition from an isotropic phase to a rotator phase, where positions are crystalline but orientations are free. When over-compressing the isotropic phase into the rotator regime, we observed super-Arrhenius slowing down of diffusion and relaxation, and signatures of the cage effect. These features of glassy dynamics are sufficiently strong that asymptotic scaling laws of the Mode-Coupling Theory of the glass transition (MCT) could be tested, and were found to apply. We found strong coupling of positional and orientational degrees of freedom, leading to a common value for the MCT glass-transition volume fraction. Flipping modes were not slowed down significantly. We demonstrated that the results are independent of simulation method, as predicted by MCT. Further, we determined that even intra-cage motion is cooperative. We confirmed the presence of dynamical heterogeneities associated with the cage effect. The transit between cages was seen to occur on short time scales, compared to the time spent in cages; but the transit was shown not to involve displacements distinguishable in character from intra-cage motion. The presence of glassy dynamics was predicted by molecular MCT (MMCT). However, as MMCT disregards crystallization, a test by simulation was required. Glassy dynamics is unusual in monodisperse systems. Crystallization typically intervenes unless polydispersity, network-forming bonds or other asymmetries are introduced. We argue that particle anisometry acts as a sufficient source of disorder to prevent crystallization. This sheds new light on the question of which ingredients are required for glass formation.
Resumo:
Diese Dissertation untersucht den Einfluss von Eiskristallform und räumlicher Inhomogenität von Zirren auf das Retrieval von optischer Wolkendicke und effektivem Eispartikelradius. Zu diesem Zweck werden flugzeuggetragene spektrale Messungen solarer Strahlung sowie solare und langwellige Strahlungstransfersimulationen durchgeführt. Flugzeuggetragene spektrale aufwärtsgerichtete Radianzen (Strahldichten) sind mit dem SMART-Albedometer (Spectral Modular Airborne Radiation measurement sysTem) während des CIRCLE-2 (CIRrus CLoud Experiment-2) Feldexperiments im Mai 2007 gemessen worden. Basierend auf diesen Radianzdaten werden mittels eines Wolkenretrievalalgorithmus optische Wolkendicken und effektive Eispartikelradien anhand von eindimensionalen Strahlungstransferrechnungen bestimmt. Die Auswirkung der Annahme unterschiedlicher Eiskristallformen auf die retrievten Parameter wird durch Variation der Einfachstreueigenschaften der Eispartikel untersucht. Darüber hinaus wird mittels Strahlungstransferrechnungen auch der Einfluss der Eiskristallform auf den Strahlungsantrieb von Eiswolken ermittelt. Die Frage nach dem relativen Einfluss von räumlicher Wolkeninhomogenität und Eiskristallform wird anhand von dreidimensionalen und independent pixel approximation (IPA) Strahlungssimulationen untersucht. Die Analyse basiert auf einer Modelleiswolke, die aus Daten des NASA (National Aeronautics and Space Administration) TC4 (Tropical Composition, Cloud, and Climate Coupling) Feldexperiments im Sommer 2007 in Costa Rica erzeugt wurde. Lokal gesehen können beide Effekte - Eiskristallform und räumliche Eiswolkeninhomogenität - die gleiche Grössenordnung haben und zu einer Unter- bzw. Überschätzung der retrievten Parameter um 40 – 60% führen. Gemittelt über die ganze Wolke ist jedoch der Einfluss der Eiskristallform viel bedeutender als der von räumlichen Inhomogenitäten.
Resumo:
Copper(I) halide clusters are recently considered as good candidate for optoelectronic devices such as OLEDs . Although the copper halide clusters, in particular copper iodide, are very well known since the beginning of the 20th century, only in the late ‘70s the interest on these compounds grew dramatically due their particular photophysical behaviour. These complexes are characterized by a dual triplet emission bands, named Cluster Centred (3CC) and Halogen-to-Ligand charge transfer (3XLCT), the intensities of which are strictly related with the temperature. The CC transition, due to the presence of a metallophylic interactions, is prevalent at ambient temperature while the XLCT transition, located preferentially on the ligand part, became more prominent at low temperature. Since these pioneering works, it was easy to understand the photophysical properties of this compounds became more interesting in solid-state respect to solution with an improvement in emission efficiency. In this work we aim to characterize in SS organocopper(I)iodide compounds to valuate the correlation between the molecular crystal structure and the photophysical properties. It is also considered to hike new strategies to synthesize CuI complexes from the wet reactions to the more green solvent free methods. The advantages in using these strategies are evident but, obtain a single crystal suitable for SCXRD analysis from these batches is quite impossible. The structure solution still remains the key point in this research so we tackle this problem solving the structure by X-ray powder diffraction data. When the sample was fully characterized we moved to design and development of the associated OLED-device. Since copper iodide complexes are often insoluble in organic solvents, the high vacuum deposition technique is preferred. A new non-conventional deposition process have also been proposed to avoid the low complex stability in this practice with an in-situ complex formation in a layer-by layer deposition route.