954 resultados para creatinine clearance
Resumo:
DNA protein interactions that occur during transcription initiation play an important role in regulating gene expression. To initiate transcription, RNA polymerase (RNAP) binds to promoters in a sequence-specific fashion. This is followed by a series of steps governed by the equilibrium binding and kinetic rate constants, which in turn determine the overall efficiency of the transcription process. We present here the first detailed kinetic analysis of promoter RNAP interactions during transcription initiation in the sigma(A)-dependent promoters P-rrnAPCL1, P-rrnB and P-gyr of Mycobacterium smegmatis. The promoters show comparable equilibrium binding affinity but differ significantly in open complex formation, kinetics of isomerization and promoter clearance. Furthermore, the two rrn promoters exhibit varied kinetic properties during transcription initiation and appear to be subjected to different modes of regulation. In addition to distinct kinetic patterns, each one of the housekeeping promoters studied has its own rate-limiting step in the initiation pathway, indicating the differences in their regulation.
Resumo:
Preovulatory follicular atresia was studied using pregnant mare serum gonadotropin (PMSG)-primed rats (15 IU/rat) which were deprived of hormonal support either by allowing the metabolic clearance of the PMSG or by injecting a specific PMSG antiserum (PMSG a/s). Atresia was monitored by an increase in lysosomal cathepsin-D activity and a decrease in the receptor activity of the granulosa cells (GC) isolated from the preovulatory follicles. It was shown that the increase in lysosomal activity and the decrease in receptor activity seen at 96 h after PMSG (or PMSG plus PMSG a/s) could be arrested both by follicle stimulating hormone (FSH) and luteinizing hormone (LH). Injection of cyanoketone or clomiphene citrate together with FSH/LH prevented this 'rescue' suggesting a role for estrogens in the regulation of atresia. Although the administration of estradiol-17 beta (20 micrograms/rat) together with PMSG a/s could show a 'rescue effect' in terms of reduction in cathepsin-D activity the gonadotropin receptor activities of these granulosa cells were not restored. The injection of dihydrotestosterone (DHT) to 48 h PMSG-primed rats induced atresia as noted by an increase in cathepsin-D activity. However, the exogenous administration of FSH along with DHT prevented this atretic effect suggesting that DHT is not having a direct effect on atresia. Determination of androgen: estrogen content of the granulosa cells and an analysis of the individual profile of androgen and estrogen revealed that the increase in cathepsin-D activity could be correlated only with the decrease in GC estrogen content. This along with the observation that GC showed a loss of estrogen synthesis well before the increase in cathepsin-D activity strongly points out that the lack of estrogen rather than an increase in androgen is the principle factor responsible for the atresia of preovulatory follicles in the rat.
Resumo:
Streptococcus pneumoniae (pneumococcus) is a normal inhabitant of the human nasopharynx. Symptoms occur in only a small proportion of those who become carriers, but the ubiquity of the organism in the human population results in a large burden of disease. S. pneumoniae is the leading bacterial cause of pneumonia, sepsis, and meningitis worldwide, causing the death of a million children each year. Middle-ear infection is the most common clinical manifestation of mucosal pneumococcal infections. In invasive disease, S. pneumoniae gains access to the bloodstream and spreads to normally sterile parts of the body. The progression from asymptomatic colonization to disease depends on factors characteristic of specific pneumococcal strains as well as the status of host defenses. The polysaccharide capsule surrounding the bacterium is considered to be the most important factor affecting the virulence of pneumococci. It protects pneumococci from phagocytosis and also may determine its affinity to the respiratory epithelium. S. pneumoniae as a species comprises more than 90 different capsular serotypes, but not all of them are equally prevalent in human diseases. Invasive serotypes are rarely isolated from healthy carriers, but relatively often cause invasive disease. Serotypes that are carried asymptomatically for a long time behave like opportunistic pathogens, causing disease in patients who have impaired immune defenses. The complement system is a collection of blood and cell surface proteins that act as a major primary defense against invading microbes. Phagocytic cells with receptors for complement proteins can engulf and destroy pneumococcal cells opsonized with these proteins. S. pneumoniae has evolved a number of ways to subvert mechanisms of innate immunity, and this is likely to contribute to its pathogenicity. The capsular serotype, proteins essential for virulence, as well the genotype, may all influence the ability of pneumococcus to resist complement and its potential to cause disease. Immunization with conjugate vaccines produces opsonic antibodies, which enhance complement deposition and clearance of the bacteria. The pneumococcal vaccine included in the Finnish national immunization program in 2010 contains the most common serotypes causing invasive disease. Clinical data suggest that protection from middle-ear infection and possibly also from invasive disease depends largely on the capsular serotype, for reasons hitherto unknown. The general aim of this thesis is to assess the relative roles of the pneumococcal capsule and virulence proteins in complement evasion and subsequent opsonophagocytic killing. The main question is whether differences between serotypes to resist complement explain the different abilities of serotypes to cause disease. The importance of particular virulence factors to the complement resistance of a strain may vary depending on its genotype. Prior studies have evaluated the effect of the capsule and virulence proteins on complement resistance of S. pneumoniae by comparing only a few strains. In this thesis, the role of pneumococcal virulence factors in the complement resistance of the bacterium was studied in several genotypically different strains. The ability of pneumococci to inhibit deposition of the complement protein C3 on the bacterial surface was found to depend on the capsular serotype as well as on other features of the bacteria. The results suggest that pneumococcal histidine triad (Pht) proteins may play a role in complement inhibition, but their contribution depends on the bacterial genotype. The capsular serotype was found to influence complement resistance more than the bacterial genotype. A higher concentration of anticapsular antibodies was required for the opsonophagocytic killing of serotypes resistant to C3 deposition. The invasive serotypes were more resistant to C3 deposition than the opportunistic serotypes, suggesting that the former are better adapted to resist immune mechanisms controlling the development of invasive disease. The different susceptibilities of serotypes to complement deposition, opsonophagocytosis, and resultant antibody-mediated protection should be taken into account when guidelines for serological correlates for vaccine efficacy evaluations are made. The results of this thesis suggest that antibodies in higher quantity or quality are needed for efficient protection against the invasive serotypes.
Resumo:
Mechanical joints in composites can be tailored to achieve improved performance and better life by appropriately selecting the laminate parameters. In order to gain the best advantage of this possibility of tailoring the laminate, it is necessary to understand the influence of laminate parameters on the behaviour of joints in composites. Most of the earlier studies in this direction were based on simplified assumptions regarding load transfer at the pin-plate interface and such studies were only carried out on orthotropic and quasi-isotropic laminates. In the present study, a more rigorous analysis is carried out to study pin joints in laminates with anisotropic properties. Two types of laminates with (0/ + ?4/90)s and (0/ ± ?2/90)s layups made out of graphite epoxy T300/5208 material system are considered. The analysis mainly concentrates on clearance fit in which the pin is of smaller diameter compared to the hole. The main aspect of the analysis of pin joints is the changing contact between the pin and the plate with increasing load levels. The analysis is carried out by an iterative finite element technique and a computationally efficient routine is developed for this purpose. Numerical studies indicate that the location and magnitude of the peak stresses along the hole boundary are functions of fibre angle and the overall anisotropic properties. It is also shown that the conventional assumption of cosine distribution for the contact pressure between pin and the plate in the analysis lead to underestimation of bearing failure load and overestimation of shear and tensile failure loads in typical (0/905)s cross-ply laminates.
Resumo:
Objectives: Wegener s granulomatosis (WG) is a vasculitis with a predilection for the airways and kidneys. An increasing incidence and improved prognosis of WG has been shown. The aim of this study was to evaluate the incidence, clinical presentation, diagnostic delay, risk of dialysis-dependent renal insufficiency and mortality of WG in 1981-2000. Patients and methods: Data was retrieved from the Finnish hospital discharge register and hospital case reports. Patients diagnosed with WG in 1981-2000 were included, and their demographic and clinical data recorded. The patients were crossed with the national kidney dialysis register and the national mortality statistics. Results: A total of 492 patients (243 ♂ , 249 ♀) were diagnosed at a mean age of 54 years (SD 18). The incidence increased from 1.9 to 9.3/ million/ year. The median diagnostic delay decreased from 17 to 4 months. Patients presented most often with symptoms of the ear, nose and throat (ENT) (45%), lung (36%), musculoskeletal system (22%) and kidney (11%). Initial lung involvement, constitutional symptoms, high erythrocyte sedimentation rate (ESR) and high ELK scores [(number of simultaneously involved organ groups (ENT, Lung, Kidney)] were associated with a shorter diagnostic delay. Medical treatment of WG patients remained similar in the 1980s and 1990s. Almost 90% of patients received cyclophosphamide (CYC) and more than 90% glucocorticoid medication at some point during the course of the disease. Eighty-four patients (17%) needed dialysis. Initial renal involvement and elevated serum creatinine values were related to an increased risk of dialysis-dependent kidney disease. In two-thirds of the patients, renal impairment was reversible. Dialysis became chronic (>3 months) in 32 patients (6.5%). Nineteen patients (3.9%) received a kidney transplant. Altogether 203 patients (99 men, 104 women) died before 30 June 2005. WG was the underlying cause of death in 37%. The crude one-year and five-year survival rates were 83.3% and 74.2%, respectively. The standardized mortality ratio was 3.43 (95% CI = 2.98 to 3.94). Older age and elevated creatinine level at diagnosis predicted shorter survival. ENT symptoms at presentation and treatment with CYC were associated with better outcome. There was no additional risk associated with male gender or with either of the decades (1981-1990 and 1991-2000) Conclusions: In 1981-2000, the incidence of WG increased ca. 4.5-fold and diagnostic delay decreased to ca. one-fourth, reflecting increased recognition of the disease and improved diagnostic means. WG patients are at great risk of developing dialysis-dependent renal insufficiency and an increased risk of dying. During the study period the treatment of WG did not change markedly, nor did the prognosis improve.
Resumo:
The main purpose of revascularization procedures for critical limb ischaemia (CLI) is to preserve the leg and sustain the patient s ambulatory status. Other goals are ischaemic pain relief and healing of ischaemic ulcers. Patients with CLI are usually old and have several comorbidities affecting the outcome. Revascularization for CLI is meaningless unless both life and limb are preserved. Therefore, the knowledge of both patient- and bypass-related risk factors is of paramount importance in clinical decision-making, patient selection and resource allocation. The aim of this study was to identify patient- and graft-related predictors of impaired outcome after infrainguinal bypass for CLI. The purpose was to assess the outcome of high-risk patients undergoing infrainguinal bypass and to evaluate the usefulness of specific risk scoring methods. The results of bypasses in the absence of optimal vein graft material were also evaluated, and the feasibility of the new method of scaffolding suboptimal vein grafts was assessed. The results of this study showed that renal insufficiency - not only renal failure but also moderate impairment in renal function - seems to be a significant risk factor for both limb loss and death after infrainguinal bypass in patients with CLI. Low estimated GFR (PIENEMPI KUIN 30 ml/min/1.73 m2) is a strong independent marker of poor prognosis. Furthermore, estimated GFR is a more accurate predictor of survival and leg salvage after infrainguinal bypass in CLI patients than serum creatinine level alone. We also found out that the life expectancy of octogenarians with CLI is short. In this patient group endovascular revascularization is associated with a better outcome than bypass in terms of survival, leg salvage and amputation-free survival especially in presence of coronary artery disease. This study was the first one to demonstrate that Finnvasc and modified Prevent III risk scoring methods both predict the long-term outcome of patients undergoing both surgical and endovascular infrainguinal revascularization for CLI. Both risk scoring methods are easy to use and might be helpful in clinical practice as an aid in preoperative patient selection and decision-making. Similarly than in previous studies, we found out that a single-segment great saphenous vein graft is superior to any other autologous vein graft in terms of mid-term patency and leg salvage. However, if optimal vein graft is lacking, arm vein conduits are superior to prosthetic grafts especially in infrapopliteal bypasses for CLI. We studied also the new method of scaffolding suboptimal quality vein grafts and found out that this method may enable the use of vein grafts of compromised quality otherwise unsuitable for bypass grafting. The remarkable finding was that patients with the combination of high operative risk due to severe comorbidities and risk graft have extremely poor survival, suggesting that only relatively fit patients should undergo complex bypasses with risk grafts. The results of this study can be used in clinical practice as an aid in preoperative patient selection and decision-making. In the future, the need of vascular surgery will increase significantly as the elderly and diabetic population increases, which emphasises the importance of focusing on those patients that will gain benefit from infrainguinal bypass. Therefore, the individual risk of the patient, ambulatory status, outcome expectations, the risk of bypass procedure as well as technical factors such as the suitability of outflow anatomy and the available vein material should all be assessed and taken into consideration when deciding on the best revascularization strategy.
Resumo:
The zinc-finger transcription factors GATA2 and GATA3 in vertebrates belong to the six-member family that are essential regulators in the development of various organs. The aim of this study was to gain new information of the roles of GATA2 and GATA3 in inner ear morphogenesis and of the function of GATA2 in neuronal fate specification in the midbrain using genetically modified mouse and chicken embryos as models. A century ago the stepwise process of inner ear epithelial morphogenesis was described, but the molecular players regulating the cellular differentiation of the otic epithelium are still not fully resolved. This study provided novel data on GATA factor roles in several developmental processes during otic development. The expression analysis in chicken suggested that GATA2 and GATA3 possess redundant roles during otic cup and vesicle formation, but complementary cell-type specific functions during vestibular and cochlear morphogenesis. The comparative analysis between mouse and chicken Gata2 and Gata3 expression revealed many conserved aspects, especially during later stages of inner ear development, while the expression was more divergent at early stages. Namely, expression of both Gata genes was initiated earlier in chicken than mouse otic epithelium relative to the morphogenetic stages. Likewise, important differences concerning Gata3 expression in the otic cup epithelium were detected between mouse and chicken, suggesting that distinct molecular mechanisms regulate otic vesicle closure in different vertebrate species. Temporally distinct Gata2 and Gata3 expression was also found during otic ganglion formation in mouse and chicken. Targeted inactivation of Gata3 in mouse embryos caused aberrant morphology of the otic vesicle that in severe cases was disrupted into two parts, a dorsal and a ventral vesicle. Detailed analyses of Gata3 mutant embryos unveiled a crucial role for GATA3 in the initial inner ear morphogenetic event, the invagination of the otic placode. A large-scale comparative expression analysis suggested that GATA3 could control cell adhesion and motility in otic epithelium, which could be important for early morphogenesis. GATA3 was also identified as the first factor to directly regulate Fgf10 expression in the otic epithelium and could thus influence the development of the semicircular ducts. Despite the serious problems in the early inner ear development, the otic sensory fate establishment and some vestibular hair cell differentiation was observable in pharmacologically rescued Gata3-/- embryos. Cochlear sensory differentiation was, however, completely blocked so that no auditory hair cells were detected. In contrast to the early morphogenetic phenotype in Gata3-/- mutants, conditional inactivation of Gata2 in mouse embryos resulted in a relatively late growth defect of the three semicircular ducts. GATA2 was required for the proliferation of the vestibular nonsensory epithelium to support growing of the three ducts. Concurrently, with the role in epithelial semicircular ducts, GATA2 was also required for the mesenchymal cell clearance from the vestibular perilymphatic region between the membranous labyrinth and bony capsule. The gamma-aminobutyric acid-secreting (GABAergic) neurons in the midbrain are clinically relevant since they contribute to fear, anxiety, and addiction regulation. The molecular mechanisms regulating the GABAergic neuronal development, however, are largely unknown. Using tissue-specific mutagenesis in mice, GATA2 was characterized as a critical determinant of the GABAergic neuronal fate in the midbrain. In Gata2-deficient mouse midbrain, GABAergic neurons were not produced, instead the Gata2-mutant cells acquired a glutamatergic neuronal phenotype. Gain-of-function experiments in chicken also revealed that GATA2 was sufficient to induce GABAergic differentiation in the midbrain.
Resumo:
Accurate, reliable and economical methods of determining stress distributions are important for fastener joints. In the past the contact stress problems in these mechanically fastened joints using interference or push or clearance fit pins were solved using both inverse and iterative techniques. Inverse techniques were found to be most efficient, but at times inadequate in the presence of asymmetries. Iterative techniques based on the finite element method of analysis have wider applications, but they have the major drawbacks of being expensive and time-consuming. In this paper an improved finite element technique for iteration is presented to overcome these drawbacks. The improved iterative technique employs a frontal solver for elimination of variables not requiring iteration, by creation of a dummy element. This automatically results in a large reduction in computer time and in the size of the problem to be handled during iteration. Numerical results are compared with those available in the literature. The method is used to study an eccentrically located pin in a quasi-isotropic laminated plate under uniform tension.
Resumo:
Several of the newly developed drug molecules experience poor biopharmaceutical behavior, which hinders their effective delivery at the proper site of action. Among the several strategies employed in order to overcome this obstacle, mesoporous silicon-based materials have emerged as promising drug carriers due to their ability to improve the dissolution behavior of several poorly water-soluble drugs compounds confined within their pores. In addition to improve the dissolution behavior of the drugs, we report that porous silicon (PSi) nanoparticles have a higher degree of biocompatibility than PSi microparticles in several cell lines studied. In addition, the degradation of the nanoparticles showed its potential to fast clearance in the body. After oral delivery, the PSi particles were also found to transit the intestines without being absorbed. These results constituted the first quantitative analysis of the behavior of orally administered PSi nanoparticles compared with other delivery routes in rats. The self-assemble of a hydrophobin class II (HFBII) protein at the surface of hydrophobic PSi particles endowed the particles with greater biocompatibility in different cell lines, was found to reverse their hydrophobicity and also protected a drug loaded within its pores against premature release at low pH while enabling subsequent drug release as the pH increased. These results highlight the potential of HFBII-coating for PSi-based drug carriers in improving their hydrophilicity, biocompatibility and pH responsiveness in drug delivery applications. In conclusion, mesoporous silicon particles have been shown to be a versatile platform for improving the dissolution behavior of poorly water-soluble drugs with high biocompatibility and easy surface modification. The results of this study also provide information regarding the biofunctionalization of the THCPSi particles with a fungal protein, leading to an improvement in their biocompatibility and endowing them with pH responsive and mucoadhesive properties.
Resumo:
Pin-loaded lugs were analysed in the presence of cracks emanating from circular holes. The analysis presents a unified treatment of interference, push or clearance fit pins. Both metallic (isotropic) and composite (orthotropic) plates were dealt with. The finite element model used special singular six-noded quadrilateral elements at the crack tip. The non-linear load contact behaviour at the pin-hole interface was dealt with by an inverse technique. A modified crack closure integral (MCCI) technique was used to evaluate the strain energy release rates (SERRs) and stress intensity factors (SIFs) at the crack tips. Numerical results are presented showing the non-linear variation of SIF with applied stress, and the influence of the amount of interference or clearance and the interfacial friction on SIF.
Resumo:
Nucleoside di- and triphosphates and adenosine regulate several components of the mucocilairy clearance process (MCC) that protects the lung against infections, via activation of epithelial purinergic receptors. However, assessing the contribution of individual nucleotides to MCC functions remains difficult due to the complexity of the mechanisms of nucleotide release and metabolism. Enzymatic activities involved in the metabolism of extracellular nucleotides include ecto-ATPases and secreted nucleoside diphosphokinase (NDPK) and adenyl kinase, but potent and selective inhibitors of these activities are sparse. In the present study, we discovered that ebselen markedly reduced NDPK activity while having negligible effect on ecto-ATPase and adenyl kinase activities. Addition of radiotracer gamma P-32]ATP to human bronchial epithelial (HBE) cells resulted in rapid and robust accumulation of P-32]-inorganic phosphate ((32)Pi). Inclusion of UDP in the incubation medium resulted in conversion of gamma P-32]ATP to P-32]UTP, while inclusion of AMP resulted in conversion of gamma P-32]ATP to P-32]ADP. Ebselen markedly reduced P-32]UTP formation but displayed negligible effect on (32)Pi or P-32]ADP accumulations. Incubation of HBE cells with unlabeled UTP and ADP resulted in robust ebselen-sensitive formation of ATP (IC50=6.9 +/- 2 mu M). This NDPK activity was largely recovered in HBE cell secretions and supernatants from lung epithelial A549 cells. Kinetic analysis of NDPK activity indicated that ebselen reduced the V-max of the reaction (K-i=7.6 +/- 3 mu M), having negligible effect on KM values. Our study demonstrates that ebselen is a potent noncompetitive inhibitor of extracellular NDPK.
Resumo:
The protective ability of cytotoxic T cells (CTL) raised in vitro against Japanese encephalitis virus (JEV) was examined by adoptive transfer experiments. Adoptive transfer of anti-JEV effecters by intracerebral (i.c.) but not by intraperitoneal (i.p.) or intravenous (i.v.) routes protected adult BALB/c mice against lethal i.c. JEV challenge. In contrast to adult mice, adoptive transfer of anti-JEV effecters into newborn (4-day-old) and suckling (8-14-day-old) mice did not confer protection. However, virus-induced death was delayed in suckling mice compared to newborn mice upon adoptive transfer. The specific reasons for lack of protection in newborn mice are not clear but virus load was found to be higher in newborn mice brains compared to those of adults and virus clearance was observed only in adult mice brains but not in newborn mice brains upon adoptive transfer. Specific depletion of Lyt 2.2(+), L3T4(+) or Thy-1(+) T cell populations before adoptive transfer abrogated the protective ability of transferred effecters. However, when Lyt 2.2(+) cell-depleted and L3T4(+) cell-depleted effecters were mixed and transferred into adult mice the protective activity was retained, demonstrating that both Lyt 2.2(+) and L3T4(+) T cells are necessary to confer protection. Although the presence of L3T4(+) T cells in adoptively transferred effector populations enhanced virus-specific serum neutralizing antibodies, the presence of neutralizing antibodies alone without Lyt 2.2(+) cells was not sufficient to confer protection.
Resumo:
Vapour adsorption refrigeration systems (VAdS) have the advantage of scalability over a wide range of capacities ranging from a few watts to several kilowatts. In the first instance, the design of a system requires the characteristics of the adsorbate-adsorbent pair. Invariably, the void volume in the adsorbent reduces the throughput of the thermal compressor in a manner similar to the clearance volume in a reciprocating compressor. This paper presents a study of the activated carbon +HFC-134a (1,1,1,2-tetrafluoroethane) system as a possible pair for a typical refrigeration application. The aim of this study is to unfold the nexus between the adsorption parameters, achievable packing densities of charcoal and throughput of a thermal compressor. It is shown that for a thermal compressor, the adsorbent should not only have a high surface area, but should also be able to provide a high packing density. Given the adsorption characteristics of an adsorbent-adsorbate pair and the operating conditions, this paper discloses a method for the calculation of the minimum packing density necessary for an effective throughput of a thermal compressor. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
After initiation of transcription, a number of proteins participate during elongation and termination modifying the properties of the RNA polymerase (RNAP). Gre factors are one such group conserved across bacteria. They regulate transcription by projecting their N-terminal coiled-coil domain into the active center of RNAP through the secondary channel and stimulating hydrolysis of the newly synthesized RNA in backtracked elongation complexes. Rv1080c is a putative gre factor (MtbGre) in the genome of Mycobacterium tuberculosis. The protein enhanced the efficiency of promoter clearance by lowering abortive transcription and also rescued arrested and paused elongation complexes on the GC rich mycobacterial template. Although MtbGre is similar in domain organization and shares key residues for catalysis and RNAP interaction with the Gre factors of Escherichia coli, it could not complement an E. coli gre deficient strain. Moreover, MtbGre failed to rescue E. coli RNAP stalled elongation complexes, indicating the importance of specific protein-protein interactions for transcript cleavage. Decrease in the level of MtbGre reduced the bacterial survival by several fold indicating its essential role in mycobacteria. Another Gre homolog, Rv3788 was not functional in transcript cleavage activity indicating that a single Gre is sufficient for efficient transcription of the M. tuberculosis genome.
Resumo:
Trypanosoma evansi is a causative agent of `surra', a common haemoprotozoan disease of livestock in India causing high morbidity and mortality in disease endemic areas. The proteinases released by live and dead trypanosomes entail immunosuppression in the infected host, which immensely contribute in disease pathogenesis. Cysteine proteinases are identified in the infectious cycle of trypanosomes such as cruzain from Trypanosoma cruzi, rhodesain or brucipain from Trypanosoma brucei rhodesiense and congopain from Trypanosoma congelense. These enzymes localised in lysosome-like organelles, flagellar pocket and on cell surface, which play a critical role in the life cycle of protozoan parasites, viz. in host invasion, nutrition and alteration of the host immune response. The paper describes the identification of cysteine proteinases of T. evansi lysate, activity profile at different pH optima and inhibition pattern using a specific inhibitor, besides the polypeptide profile of an antigen. Eight proteinases of T. evansi were identified in the molecular weight (MW) ranges of 28-170 kDa using gelatin substrate-polyacrylamide gel electrophoresis (GS-PAGE), and of these proteinases, six were cysteine proteinases, as they were inhibited by L-3-carboxy-2,3-transepoxypropionyl-lecuylamido (4-guanidino)-butane (E-64), a specific inhibitor. These proteolytic enzymes were most reactive in acidic pH between 3.0 and 5.5 in the presence of dithiothreitol and completely inactive at alkaline pH 10.0. Similarly, the GS-PAGE profile of the serum samples of rats infected with T. evansi revealed strong proteolytic activity only at the 28-kDa zone at pH 5.5, while no proteolytic activity was observed in serum samples of uninfected rats. Further, the other zones of clearance, which were evident in T. evansi antigen zymogram, could not be observed in the serum samples of rats infected with T. evansi. The polypeptide pattern of the whole cell lysate antigen revealed 12-15 polypeptide bands ranging from 28 to 81 kDa along with five predominant polypeptides bands (MW of 81, 66, 62, 55 and 45 kDa), which were immunoreactive with hyperimmune serum (HIS) and serum of experimentally infected rabbits with T. evansi infection. The immunoblot recognised antibodies in experimentally infected rabbits and against HIS as well, corresponding to the zone of clearances at lower MW ranges (28-41 kDa), which may be attributed to the potential of these proteinases in the diagnosis of T. evansi infection. Since these thiol-dependent enzymes are most active in acidic pH and considering their inhibition characteristics, these data suggest that they resemble to the mammalian lysosomal cathepsin B and L.